IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2015-d161581.html
   My bibliography  Save this article

Energy-Efficient Clusters for Object Tracking Networks

Author

Listed:
  • Yang-Hsin Fan

    (Department of Computer Science and Information Engineering, National Taitung University, Taitung 95092, Taiwan)

Abstract

Smart cities have hundreds of thousands of devices for tracking data on crime, the environment, and traffic (such as data collected at crossroads and on streets). This results in higher energy usage, as they are recording information persistently and simultaneously. Moreover, a single object tracking device, on a corner at an intersection for example has a limited scope of view, so more object tracking devices are added to broaden the view. As an increasing number of object tracking devices are constructed on streets, their efficient energy consumption becomes a significant issue. This work is concerned with decreasing the energy required to power these systems, and proposes energy-efficient clusters (EECs) of object tracking systems to achieve energy savings. First, we analyze a current object tracking system to establish an equivalent model. Second, we arrange the object tracking system in a cluster structure, which facilitates the evaluation of energy costs. Third, the energy consumption is assessed as either dynamic or static, which is a more accurate system for determining energy consumption. Fourth, we analyze all possible scenarios of the object’s location and the resulting energy consumption, and derive a number of formulas for the fast computation of energy consumption. Finally, the simulation results are reported. These results show the proposed EEC is an effective way to save energy, compared with the energy consumption benchmarks of current technology.

Suggested Citation

  • Yang-Hsin Fan, 2018. "Energy-Efficient Clusters for Object Tracking Networks," Energies, MDPI, vol. 11(8), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2015-:d:161581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahra Pooranian & Jemal H. Abawajy & Vinod P & Mauro Conti, 2018. "Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters," Energies, MDPI, vol. 11(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang-Hsin Fan, 2020. "Multiple-Embedded-System Optimization Layout for Electromagnetic Wave Power Density in Complex Environments," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heekwon Yang & Byeol Kim & Joosung Lee & Yonghan Ahn & Chankil Lee, 2018. "Advanced Wireless Sensor Networks for Sustainable Buildings Using Building Ducts," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    2. Chen, Pengzhan & Liu, Mengchao & Chen, Chuanxi & Shang, Xin, 2019. "A battery management strategy in microgrid for personalized customer requirements," Energy, Elsevier, vol. 189(C).
    3. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    4. Thomas Märzinger & Doris Österreicher, 2019. "Supporting the Smart Readiness Indicator—A Methodology to Integrate A Quantitative Assessment of the Load Shifting Potential of Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-22, May.
    5. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    6. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    7. Bo Li & Yudong Wang & Jian Li & Shengxian Cao, 2018. "A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid," Energies, MDPI, vol. 11(8), pages 1-21, August.
    8. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
    9. Francesca Marcello & Virginia Pilloni & Daniele Giusto, 2019. "Sensor-Based Early Activity Recognition Inside Buildings to Support Energy and Comfort Management Systems," Energies, MDPI, vol. 12(13), pages 1-18, July.
    10. Yuanqian Ma & Xianyong Xiao & Ying Wang, 2018. "Investment Strategy and Multi–Objective Optimization Scheme for Premium Power under the Background of the Opening of Electric Retail Side," Energies, MDPI, vol. 11(8), pages 1-25, August.
    11. Saman Nikkhah & Adib Allahham & Janusz W. Bialek & Sara L. Walker & Damian Giaouris & Simira Papadopoulou, 2021. "Active Participation of Buildings in the Energy Networks: Dynamic/Operational Models and Control Challenges," Energies, MDPI, vol. 14(21), pages 1-28, November.
    12. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    13. Esmaeil Ahmadi & Younes Noorollahi & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Stochastic Operation of a Solar-Powered Smart Home: Capturing Thermal Load Uncertainties," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    14. Wadim Strielkowski & Elena Volkova & Luidmila Pushkareva & Dalia Streimikiene, 2019. "Innovative Policies for Energy Efficiency and the Use of Renewables in Households," Energies, MDPI, vol. 12(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2015-:d:161581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.