IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1409-d149954.html
   My bibliography  Save this article

Mechanical Property Measurements and Fracture Propagation Analysis of Longmaxi Shale by Micro-CT Uniaxial Compression

Author

Listed:
  • Minyue Zhou

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institution of Earth Science, Chinese Academy of Science, Beijing 100029, China
    College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yifei Zhang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institution of Earth Science, Chinese Academy of Science, Beijing 100029, China
    College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Runqing Zhou

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institution of Earth Science, Chinese Academy of Science, Beijing 100029, China)

  • Jin Hao

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institution of Earth Science, Chinese Academy of Science, Beijing 100029, China)

  • Jijin Yang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institution of Earth Science, Chinese Academy of Science, Beijing 100029, China
    College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The mechanical properties and fracture propagation of Longmaxi shale loading under uniaxial compression were measured using eight cylindrical shale specimens (4 mm in diameter and 8 mm in height), with the bedding plane oriented at 0° and 90° to the axial loading direction, respectively, by micro computed tomography (micro-CT). Based on the reconstructed three-dimensional (3-D) CT images of cracks, different stages of the crack growth process in the 0° and 90° orientation specimen were revealed. The initial crack generally occurred at relatively smaller loading force in the 0° bedding direction specimen, mainly in the form of tensile splitting along weak bedding planes. Shear sliding fractures were dominant in the specimens oriented at 90°, with a small number of parallel cracks occurring on the bedding plane. The average thickness and volume of cracks in the 90° specimen is higher than those for the specimen oriented at 0°. The geometrical characterization of fractures segmented from CT scan binary images shows that a specific surface area correlates with tortuosity at the different load stages of each specimen. The 3-D box-counting dimension (BCD) calculations can accurately reflect crack evolution law in the shale. The results indicate that the cracks have a more complex pattern and rough surface at an orientation of 90°, due to crossed secondary cracks and shear failure.

Suggested Citation

  • Minyue Zhou & Yifei Zhang & Runqing Zhou & Jin Hao & Jijin Yang, 2018. "Mechanical Property Measurements and Fracture Propagation Analysis of Longmaxi Shale by Micro-CT Uniaxial Compression," Energies, MDPI, vol. 11(6), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1409-:d:149954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao Li & Yongting Duan & Shouding Li & Runqing Zhou, 2017. "Study on the Progressive Failure Characteristics of Longmaxi Shale under Uniaxial Compression Conditions by X-ray Micro-Computed Tomography," Energies, MDPI, vol. 10(3), pages 1-13, March.
    2. Hiroaki Yaritani & Jun Matsushima, 2014. "Analysis of the Energy Balance of Shale Gas Development," Energies, MDPI, vol. 7(4), pages 1-21, April.
    3. Yusong Wu & Xiao Li & Jianming He & Bo Zheng, 2016. "Mechanical Properties of Longmaxi Black Organic-Rich Shale Samples from South China under Uniaxial and Triaxial Compression States," Energies, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youqing Chen & Makoto Naoi & Yuto Tomonaga & Takashi Akai & Hiroyuki Tanaka & Sunao Takagi & Tsuyoshi Ishida, 2018. "Method for Visualizing Fractures Induced by Laboratory-Based Hydraulic Fracturing and Its Application to Shale Samples," Energies, MDPI, vol. 11(8), pages 1-14, July.
    2. Xiangxiang Zhang & Jianguo Wang & Feng Gao & Xiaolin Wang, 2018. "Numerical Study of Fracture Network Evolution during Nitrogen Fracturing Processes in Shale Reservoirs," Energies, MDPI, vol. 11(10), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Tang & Seisuke Okubo & Jiang Xu & Shoujian Peng, 2018. "Study on the Progressive Failure Characteristics of Coal in Uniaxial and Triaxial Compression Conditions Using 3D-Digital Image Correlation," Energies, MDPI, vol. 11(5), pages 1-13, May.
    2. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1, August.
    3. Chuanliang Yan & Yuanfang Cheng & Fucheng Deng & Ji Tian, 2017. "Permeability Change Caused by Stress Damage of Gas Shale," Energies, MDPI, vol. 10(9), pages 1-11, September.
    4. Chiara Deangeli & Omoruyi Omoman Omwanghe, 2018. "Prediction of Mud Pressures for the Stability of Wellbores Drilled in Transversely Isotropic Rocks," Energies, MDPI, vol. 11(8), pages 1-31, July.
    5. Wang, Jianliang & Liu, Mingming & McLellan, Benjamin C. & Tang, Xu & Feng, Lianyong, 2017. "Environmental impacts of shale gas development in China: A hybrid life cycle analysis," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 38-45.
    6. Ke Wang & Harrie Vredenburg & Jianliang Wang & Yi Xiong & Lianyong Feng, 2017. "Energy Return on Investment of Canadian Oil Sands Extraction from 2009 to 2015," Energies, MDPI, vol. 10(5), pages 1-13, May.
    7. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    8. Cheng Cheng & Xiao Li, 2018. "Cyclic Experimental Studies on Damage Evolution Behaviors of Shale Dependent on Structural Orientations and Confining Pressures," Energies, MDPI, vol. 11(1), pages 1-20, January.
    9. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    10. Chenji Wei & Liangang Wang & Baozhu Li & Lihui Xiong & Shuangshuang Liu & Jie Zheng & Suming Hu & Hongqing Song, 2018. "A Study of Nonlinear Elasticity Effects on Permeability of Stress Sensitive Shale Rocks Using an Improved Coupled Flow and Geomechanics Model: A Case Study of the Longmaxi Shale in China," Energies, MDPI, vol. 11(2), pages 1-16, February.
    11. Brandt, Adam R. & Yeskoo, Tim & Vafi, Kourosh, 2015. "Net energy analysis of Bakken crude oil production using a well-level engineering-based model," Energy, Elsevier, vol. 93(P2), pages 2191-2198.
    12. Carlo Andrea Bollino & Francesco Asdrubali & Paolo Polinori & Simona Bigerna & Silvia Micheli & Claudia Guattari & Antonella Rotili, 2017. "A Note on Medium- and Long-Term Global Energy Prospects and Scenarios," Sustainability, MDPI, vol. 9(5), pages 1-25, May.
    13. Roman Nogovitsyn & Anton Sokolov, 2014. "Preliminary Calculation of the EROI for the Production of Gas in Russia," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    14. Devin Moeller & David Murphy, 2019. "Comments on Energy Return on Investment (EROI): Reconciling Boundary and Methodological Issues," Biophysical Economics and Resource Quality, Springer, vol. 4(2), pages 1-3, June.
    15. Jingxuan Feng & Lianyong Feng & Jianliang Wang, 2018. "Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels," Energies, MDPI, vol. 11(2), pages 1-21, February.
    16. Seyedalireza Khatibi & Mehdi Ostadhassan & David Tuschel & Thomas Gentzis & Humberto Carvajal-Ortiz, 2018. "Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis," Energies, MDPI, vol. 11(6), pages 1-19, May.
    17. Devin Moeller & David Murphy, 2016. "Net Energy Analysis of Gas Production from the Marcellus Shale," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1409-:d:149954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.