IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3068-d181268.html
   My bibliography  Save this article

Forced Convection of Pulsating Nanofluid Flow over a Backward Facing Step with Various Particle Shapes

Author

Listed:
  • Ali J. Chamkha

    (Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia
    RAK Research and Innovation Center, American University of Ras Al Khaimah, Ras Al-Khaimah P.O. Box 10021, UAE)

  • Fatih Selimefendigil

    (Department of Mechanical Engineering, Celal Bayar University, Manisa 45140, Turkey)

Abstract

In this study, numerical analysis of forced convective pulsating nanofluid flow over a backward-facing step with different nanoparticle shapes was performed by the finite volume method. The effects of the Strouhal number (between 0.1 and 2), solid nanoparticle volume fraction (between 0 and 0.04) and nanoparticle shapes (spherical, blade and cylindrical) on the heat transfer and fluid flow were examined with the aid of numerical simulation. It was observed that the average Nusselt number is a decreasing function of the Strouhal number for the considered range, and it enhances for higher solid particle fractions. Using nanofluids with spherical particles is advantageous in pulsating flow, whereas cylindrically-shaped particles are preferred in steady flow configurations. Average Nusselt number enhancements up to 30.24% and 27.95% are achieved with cylindrical- and spherical-shaped particles at the highest volume fraction.

Suggested Citation

  • Ali J. Chamkha & Fatih Selimefendigil, 2018. "Forced Convection of Pulsating Nanofluid Flow over a Backward Facing Step with Various Particle Shapes," Energies, MDPI, vol. 11(11), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3068-:d:181268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3068/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Iqbal Shajahan & Jee Joe Michael & M. Arulprakasajothi & Sivan Suresh & Emad Abouel Nasr & H. M. A. Hussein, 2020. "Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study," Energies, MDPI, vol. 13(17), pages 1-24, September.
    2. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    3. Abbas, Naseem & Awan, Muhammad Bilal & Amer, Mohammed & Ammar, Syed Muhammad & Sajjad, Uzair & Ali, Hafiz Muhammad & Zahra, Nida & Hussain, Muzamil & Badshah, Mohsin Ali & Jafry, Ali Turab, 2019. "Applications of nanofluids in photovoltaic thermal systems: A review of recent advances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3068-:d:181268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.