IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2607-d172945.html
   My bibliography  Save this article

The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil

Author

Listed:
  • Usama Khaled

    (Department of Electrical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
    Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt)

  • Abderrahmane Beroual

    (Ampere CNRS UMR 5005, Ecole Centrale de Lyon, University of Lyon, 36 Avenue Guy Collongue, 69134 Ecully, France)

Abstract

This paper is devoted to the influence of two types of electronic scavenger additives/compounds, namely, carbon tetrachloride (CCl 4 ) and methyl iodide, which is also called iodomethane (CH 3 I), on the dielectric strength of transformer mineral oil. The tests are achieved in a sphere-sphere electrodes arrangement under AC voltage according to the IEC 60156 standard. The investigated additive concentrations range from 0 to 600 ppm. The verification of the conformity of the experimental results with normal and Weibull probabilistic distributions as well as the estimation of the breakdown voltage with risk probabilities of 1%, 10%, and 50% are also performed. It is shown that there is an optimum concentration of each type of electronic scavenger compound at which the dielectric strength of the mineral oil is significantly improved (i.e., it reaches a maximum value). This improvement is of 98% with 500 ppm of CH 3 I and 93% with 200 ppm of CCl 4 . It is also shown that the breakdown voltage values of all of the investigated samples with and without additives conform to a Weibull distribution but not to a normal distribution. The obtained results are discussed with regard to the possible mechanisms that may be responsible, particularly the two phases of inception and propagation of the streamers.

Suggested Citation

  • Usama Khaled & Abderrahmane Beroual, 2018. "The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil," Energies, MDPI, vol. 11(10), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2607-:d:172945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Z. H. Makmud & H. A. Illias & C. Y. Chee & M. S. Sarjadi, 2018. "Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation," Energies, MDPI, vol. 11(2), pages 1-12, February.
    2. Yuzhen Lv & Muhammad Rafiq & Chengrong Li & Bingliang Shan, 2017. "Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids," Energies, MDPI, vol. 10(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    2. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    3. Vaclav Mentlik & Pavel Trnka & Jaroslav Hornak & Pavel Totzauer, 2018. "Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles," Energies, MDPI, vol. 11(3), pages 1-16, February.
    4. Sameh Ziad Ahmed Dabbak & Hazlee Azil Illias & Bee Chin Ang & Nurul Ain Abdul Latiff & Mohamad Zul Hilmey Makmud, 2018. "Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    5. Samson Okikiola Oparanti & Ungarala Mohan Rao & Issouf Fofana, 2022. "Natural Esters for Green Transformers: Challenges and Keys for Improved Serviceability," Energies, MDPI, vol. 16(1), pages 1-23, December.
    6. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    7. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zbigniew Nadolny & Grzegorz Dombek, 2018. "Electro-Insulating Nanofluids Based on Synthetic Ester and TiO 2 or C 60 Nanoparticles in Power Transformer," Energies, MDPI, vol. 11(8), pages 1-11, July.
    9. Siti Sarah Junian & Mohamad Zul Hilmey Makmud & Zuhair Jamain & Khairatun Najwa Mohd Amin & Jedol Dayou & Hazlee Azil Illias, 2021. "Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material," Energies, MDPI, vol. 14(16), pages 1-11, August.
    10. Pichai Muangpratoom & Chinnapat Suriyasakulpong & Sakda Maneerot & Wanwilai Vittayakorn & Norasage Pattanadech, 2023. "Experimental Study of the Electrical and Physiochemical Properties of Different Types of Crude Palm Oils as Dielectric Insulating Fluids in Transformers," Sustainability, MDPI, vol. 15(19), pages 1, September.
    11. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    12. Usama Khaled & Abderrahmane Beroual, 2018. "AC Dielectric Strength of Mineral Oil-Based Fe 3 O 4 and Al 2 O 3 Nanofluids," Energies, MDPI, vol. 11(12), pages 1-13, December.
    13. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Basem Alamri & Lucian Mihet-Popa, 2022. "Influence of Area and Volume Effect on Dielectric Behaviour of the Mineral Oil-Based Nanofluids," Energies, MDPI, vol. 15(9), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2607-:d:172945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.