IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p941-d104014.html
   My bibliography  Save this article

Efficiency Improved Load Sensing System—Reduction of System Inherent Pressure Losses

Author

Listed:
  • Jan Siebert

    (Institute of Mobile Machines (Mobima), Karlsruhe Institute of Technology (KIT), Rintheimer Querallee 2, 76131 Karlsruhe, Germany)

  • Marco Wydra

    (Institute of Mobile Machines (Mobima), Karlsruhe Institute of Technology (KIT), Rintheimer Querallee 2, 76131 Karlsruhe, Germany)

  • Marcus Geimer

    (Institute of Mobile Machines (Mobima), Karlsruhe Institute of Technology (KIT), Rintheimer Querallee 2, 76131 Karlsruhe, Germany)

Abstract

Although more efficient than e.g., constant flow systems, hydraulic load sensing (LS) systems still have various losses, e.g., system inherent pressure losses (SIPL) due to throttling at pressure compensators. SIPL always occur whenever two or more actuators are in operation simultaneously at different pressure levels. This paper introduces a novel hydraulic LS system architecture with reduced SIPL. In the new circuit, each actuator section is automatically connected either to the tank or to a hydraulic accumulator in dependence of its individual and the systems load situation via an additional valve. When connected to the accumulator, the additional pressure potential in the return line increases the load on the actuator and thus reduces the pressure difference to be throttled at the pressure compensator. The new circuit was developed and analyzed in simulation. For this, the hydraulic simulation model of a hydraulic excavator was used. To validate the sub-models of both machine and new circuit, two separate test rigs were developed and used. Both valid sub-models then were combined to the model of the optimized system. The final simulation results showed, that under the applied conditions, the novel hydraulic circuit was able to decrease SIPL of the examined system by approximately 44% and thus increasing the machines’ total energy efficiency. With the successful completion of the project, the gathered knowledge will be used to further develop the proposed circuit and its components.

Suggested Citation

  • Jan Siebert & Marco Wydra & Marcus Geimer, 2017. "Efficiency Improved Load Sensing System—Reduction of System Inherent Pressure Losses," Energies, MDPI, vol. 10(7), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:941-:d:104014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/941/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    2. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2021. "Analysis of the Energy Efficiency Improvement in a Load-Sensing Hydraulic System Built on the ISO Plate," Energies, MDPI, vol. 14(20), pages 1-14, October.
    3. Xiaofan Guo & Jacob Lengacher & Andrea Vacca, 2022. "A Variable Pressure Multi-Pressure Rail System Design for Agricultural Applications," Energies, MDPI, vol. 15(17), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:941-:d:104014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.