IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v12y2024i2p13-d1391256.html
   My bibliography  Save this article

On the Validity of Granger Causality for Ecological Count Time Series

Author

Listed:
  • Konstantinos G. Papaspyropoulos

    (Laboratory of Forest Economics, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitris Kugiumtzis

    (Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Knowledge of causal relationships is fundamental for understanding the dynamic mechanisms of ecological systems. To detect such relationships from multivariate time series, Granger causality, an idea first developed in econometrics, has been formulated in terms of vector autoregressive (VAR) models. Granger causality for count time series, often seen in ecology, has rarely been explored, and this may be due to the difficulty in estimating autoregressive models on multivariate count time series. The present research investigates the appropriateness of VAR-based Granger causality for ecological count time series by conducting a simulation study using several systems of different numbers of variables and time series lengths. VAR-based Granger causality for count time series (DVAR) seems to be estimated efficiently even for two counts in long time series. For all the studied time series lengths, DVAR for more than eight counts matches the Granger causality effects obtained by VAR on the continuous-valued time series well. The positive results, also in two ecological time series, suggest the use of VAR-based Granger causality for assessing causal relationships in real-world count time series even with few distinct integer values or many zeros.

Suggested Citation

  • Konstantinos G. Papaspyropoulos & Dimitris Kugiumtzis, 2024. "On the Validity of Granger Causality for Ecological Count Time Series," Econometrics, MDPI, vol. 12(2), pages 1-21, May.
  • Handle: RePEc:gam:jecnmx:v:12:y:2024:i:2:p:13-:d:1391256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/12/2/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/12/2/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    2. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    3. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
    4. Marcelo Bourguignon & Josemar Rodrigues & Manoel Santos-Neto, 2019. "Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(1), pages 101-118, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanjin Li & Yining Zhao, 2025. "Examining the integrated sustainability perspective among Russia, UAE, and Iran: using the SEY model to estimate sustainability elasticities and spillovers," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 74(1), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Mari & Zsuzsa Bakk & Jennifer Oser & Jouni Kuha, 2023. "A two-step estimator for multilevel latent class analysis with covariates," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1144-1170, December.
    2. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    3. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    4. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    5. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    6. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
    7. Irshad, M.R. & Jodrá, P. & Krishna, A. & Maya, R., 2023. "On the discrete analogue of the Teissier distribution and its associated INAR(1) process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 227-245.
    8. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos & Touche, Nassim, 2019. "Integer-valued stochastic volatility," MPRA Paper 91962, University Library of Munich, Germany, revised 04 Feb 2019.
    9. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
    10. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    11. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2019. "Testing Garch-X Type Models," Econometric Theory, Cambridge University Press, vol. 35(5), pages 1012-1047, October.
    12. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    13. Lanyu Xiong & Fukang Zhu, 2024. "Robust estimation for the one-parameter exponential family integer-valued GARCH(1,1) models based on a modified Tukey’s biweight function," Computational Statistics, Springer, vol. 39(2), pages 495-522, April.
    14. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    15. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
    16. Aknouche, Abdelhakim & Francq, Christian, 2021. "Count And Duration Time Series With Equal Conditional Stochastic And Mean Orders," Econometric Theory, Cambridge University Press, vol. 37(2), pages 248-280, April.
    17. Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
    18. Byungsoo Kim & Sangyeol Lee, 2020. "Robust estimation for general integer-valued time series models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1371-1396, December.
    19. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
    20. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:12:y:2024:i:2:p:13-:d:1391256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.