IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v4y2014i2p170-198d36999.html
   My bibliography  Save this article

Olive Cultivation, its Impact on Soil Erosion and its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty

Author

Listed:
  • José A. Gómez

    (Institute for Sustainable Agriculture, CSIC, Alameda del Obispo s/n. Córdoba 14004, Spain)

  • Juan Infante-Amate

    (Agroecosystems History Laboratory, Pablo de Olavide University, Carretera de Utrera, km 1, Sevilla 41013, Spain)

  • Manuel González De Molina

    (Agroecosystems History Laboratory, Pablo de Olavide University, Carretera de Utrera, km 1, Sevilla 41013, Spain)

  • Tom Vanwalleghem

    (Department of Agronomy, University of Cordoba, Campus de Rabanales, Córdoba 14014, Spain)

  • Encarnación V. Taguas

    (Department of Rural Engineering, University of Cordoba, Campus Rabanales, Córdoba 14014, Spain)

  • Ignacio Lorite

    (IFAPA-Alameda del Obispo. Avda. Menenez Pidal s/n. Córdoba 14004, Spain)

Abstract

This article is intended as a review of the current situation regarding the impact of olive cultivation in Southern Spain (Andalusia) on soil degradation processes and its progression into yield impacts, due to diminishing soil profile depth and climate change in the sloping areas where it is usually cultivated. Finally, it explores the possible implications in the regional agricultural policy these results might have. It tries to show how the expansion and intensification of olive cultivation in Andalusia, especially since the late 18th century, had as a consequence an acceleration of erosion processes that can be identified by several indicators and techniques. Experimental and model analysis indicates that the rate of soil erosion accelerated since the expansion of mechanization in the late 1950s. In addition, that unsustainable erosion rates have prevailed in the region since the shift to a more intense olive cultivation systems by the end of the 17th Century. Although agroenvironmental measures implemented since the early 2000s have reduced erosion rates, they are still unsustainably high in a large fraction of the olive area in the region. In the case of olive orchards located in steeper areas with soils of lower water-holding capacity (due to coarse texture and stone content), cumulative erosion has already had a high impact on reducing their potential productivity. This is one of the factors that contributes towards increasing the gap between these less intensified orchards in the mountainous areas and those in the hilly areas with more gentle slopes, such as for instance the lower stretches of the Guadalquivir River Valley. In the case of olive orchards in the hilly areas with better soils, easier access to irrigation and lower production costs per unit, the efforts on soil conservation should be oriented towards limiting off-site damage, since the soil water-storage function of these soils may be preserved in the medium term even at the current soil erosion rates. The assessment made in this manuscript should be regarded as an initial approximation, since additional efforts in terms of increasing experimental records (for current or historical erosion) and of improving model analysis, with more comprehensive studies and more robust calibration and validation processes, are required.

Suggested Citation

  • José A. Gómez & Juan Infante-Amate & Manuel González De Molina & Tom Vanwalleghem & Encarnación V. Taguas & Ignacio Lorite, 2014. "Olive Cultivation, its Impact on Soil Erosion and its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty," Agriculture, MDPI, vol. 4(2), pages 1-29, June.
  • Handle: RePEc:gam:jagris:v:4:y:2014:i:2:p:170-198:d:36999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/4/2/170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/4/2/170/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Tomás Mozas-Calvache & Julio Antonio Calero González & Theo Guerra Dug & Tomas Manuel Fernández del Castillo, 2023. "Methodology for Determining Gully Widths in Multi-Temporal Studies in Olive Groves of Southern Spain," Land, MDPI, vol. 12(6), pages 1-15, May.
    2. Cerdà, A. & Rodrigo-Comino, J. & Giménez-Morera, A. & Novara, A. & Pulido, M. & Kapović-Solomun, M. & Keesstra, S.D., 2018. "Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations," Land Use Policy, Elsevier, vol. 75(C), pages 734-745.
    3. Antonio Alberto Rodríguez Sousa & Jesús M. Barandica & Alejandro Rescia, 2019. "Ecological and Economic Sustainability in Olive Groves with Different Irrigation Management and Levels of Erosion: A Case Study," Sustainability, MDPI, vol. 11(17), pages 1-20, August.
    4. Wattanai Onsamrarn & Natthapol Chittamart & Saowanuch Tawornpruek, 2020. "Performances of the WEPP and WaNuLCAS models on soil erosion simulation in a tropical hillslope, Thailand," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    5. Cuevas, Manuel & Martínez-Cartas, María Lourdes & Pérez-Villarejo, Luis & Hernández, Lucía & García-Martín, Juan Francisco & Sánchez, Sebastián, 2019. "Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning," Renewable Energy, Elsevier, vol. 132(C), pages 911-920.
    6. Antonio Alberto Rodríguez Sousa & Carlos Parra-López & Samir Sayadi-Gmada & Jesús M. Barandica & Alejandro J. Rescia, 2020. "Evaluation of the Objectives and Concerns of Farmers to Apply Different Agricultural Managements in Olive Groves: The Case of Estepa Region (Southern, Spain)," Land, MDPI, vol. 9(10), pages 1-21, October.
    7. Adélia N. Nunes & João Pedro Gonçalves & Albano Figueiredo, 2023. "Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal," Land, MDPI, vol. 12(8), pages 1-15, August.
    8. José A. Gómez & Lizardo Reyna-Bowen & Pilar Fernández Rebollo & María-Auxiliadora Soriano, 2022. "Comparison of Soil Organic Carbon Stocks Evolution in Two Olive Orchards with Different Planting Systems in Southern Spain," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    9. Antonio López-Pintor & Javier Sanz-Cañada & Ernesto Salas & Alejandro J. Rescia, 2018. "Assessment of Agri-Environmental Externalities in Spanish Socio-Ecological Landscapes of Olive Groves," Sustainability, MDPI, vol. 10(8), pages 1-25, July.
    10. Elena Brunori & Luca Salvati & Angela Antogiovanni & Rita Biasi, 2018. "Worrying about ‘Vertical Landscapes’: Terraced Olive Groves and Ecosystem Services in Marginal Land in Central Italy," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    11. Infante-Amate, Juan & Aguilera, Eduardo & Palmeri, Francesco & Guzmán, Gloria & Soto, David & García-Ruiz, Roberto & de Molina, Manuel González, 2018. "Land embodied in Spain’s biomass trade and consumption (1900–2008): Historical changes, drivers and impacts," Land Use Policy, Elsevier, vol. 78(C), pages 493-502.
    12. Antonio Alberto Rodríguez Sousa & Jesús M. Barandica & Pedro A. Aguilera & Alejandro J. Rescia, 2020. "Examining Potential Environmental Consequences of Climate Change and Other Driving Forces on the Sustainability of Spanish Olive Groves under a Socio-Ecological Approach," Agriculture, MDPI, vol. 10(11), pages 1-22, October.
    13. Renecleide Santos & Felícia Fonseca & Paula Baptista & Antonio Paz-González & Tomás de Figueiredo, 2023. "Erosion Control Performance of Improved Soil Management in Olive Groves: A Field Experimental Study in NE Portugal," Land, MDPI, vol. 12(9), pages 1-22, August.
    14. Jaime Martínez-Valderrama & Emilio Guirado & Fernando T. Maestre, 2020. "Unraveling Misunderstandings about Desertification: The Paradoxical Case of the Tabernas-Sorbas Basin in Southeast Spain," Land, MDPI, vol. 9(8), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:4:y:2014:i:2:p:170-198:d:36999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.