IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i16p1758-d1725948.html
   My bibliography  Save this article

Overview of Artificial Intelligence Applications in Roselle (Hibiscus sabdariffa) from Cultivation to Post-Harvest: Challenges and Opportunities

Author

Listed:
  • Alfonso Ramírez-Pedraza

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico
    Secretaría de Ciencia, Humanidades, Tecnología e Innovación SECIHTI, IxM, Mexico City 03940, Mexico)

  • Juan Terven

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • José-Joel González-Barbosa

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • Juan-Bautista Hurtado-Ramos

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • Diana-Margarita Córdova-Esparza

    (Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, QRO, Mexico)

  • Francisco-Javier Ornelas-Rodríguez

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • Raymundo Ramirez-Pedraza

    (Facultad de Contaduria y Administración, Universidad Autónoma de Querétaro, Querétaro 76017, QRO, Mexico)

  • Julio-Alejandro Romero-González

    (Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, QRO, Mexico)

  • Sebastián Salazar-Colores

    (IA, Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, León 37150, GTO, Mexico)

Abstract

Hibiscus sabdariffa (H. sabdariffa) is a high-value economic and functional crop, limited by agroclimatic conditions and low technological adoption. This systematic review examines the current state of artificial intelligence applications in agricultural management, analyzing 2111 records, selecting 82, and synthesizing 22 studies that meet the inclusion criteria. This review adopts a holistic framework aligned with three priority areas in agriculture—resource and climate management, crop productivity and quality, and sustainability—to explore how AI addresses key challenges in the cultivation and post-harvest processing of Hibiscus sabdariffa. The results show a predominance of classical machine learning techniques, with limited implementation of deep learning models. The most common applications include image classification, yield prediction, and analysis of bioactive compounds. However, limitations remain in the availability of open data, reproducible code, and standardized metrics. The narrative synthesis identified clear opportunities to integrate emerging technologies, such as deep neural networks and the Internet of Things (IoT), particularly in water management and stress monitoring. The review concludes that strengthening interdisciplinary research and promoting data openness is key to achieving a more resilient, sustainable, and technologically advanced crop.

Suggested Citation

  • Alfonso Ramírez-Pedraza & Juan Terven & José-Joel González-Barbosa & Juan-Bautista Hurtado-Ramos & Diana-Margarita Córdova-Esparza & Francisco-Javier Ornelas-Rodríguez & Raymundo Ramirez-Pedraza & Jul, 2025. "Overview of Artificial Intelligence Applications in Roselle (Hibiscus sabdariffa) from Cultivation to Post-Harvest: Challenges and Opportunities," Agriculture, MDPI, vol. 15(16), pages 1-46, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:16:p:1758-:d:1725948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/16/1758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/16/1758/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:16:p:1758-:d:1725948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.