IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i16p1758-d1725948.html
   My bibliography  Save this article

Overview of Artificial Intelligence Applications in Roselle (Hibiscus sabdariffa) from Cultivation to Post-Harvest: Challenges and Opportunities

Author

Listed:
  • Alfonso Ramírez-Pedraza

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico
    Secretaría de Ciencia, Humanidades, Tecnología e Innovación SECIHTI, IxM, Mexico City 03940, Mexico)

  • Juan Terven

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • José-Joel González-Barbosa

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • Juan-Bautista Hurtado-Ramos

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • Diana-Margarita Córdova-Esparza

    (Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, QRO, Mexico)

  • Francisco-Javier Ornelas-Rodríguez

    (Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro 76090, QRO, Mexico)

  • Raymundo Ramirez-Pedraza

    (Facultad de Contaduria y Administración, Universidad Autónoma de Querétaro, Querétaro 76017, QRO, Mexico)

  • Julio-Alejandro Romero-González

    (Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, QRO, Mexico)

  • Sebastián Salazar-Colores

    (IA, Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, León 37150, GTO, Mexico)

Abstract

Hibiscus sabdariffa (H. sabdariffa) is a high-value economic and functional crop, limited by agroclimatic conditions and low technological adoption. This systematic review examines the current state of artificial intelligence applications in agricultural management, analyzing 2111 records, selecting 82, and synthesizing 22 studies that meet the inclusion criteria. This review adopts a holistic framework aligned with three priority areas in agriculture—resource and climate management, crop productivity and quality, and sustainability—to explore how AI addresses key challenges in the cultivation and post-harvest processing of Hibiscus sabdariffa. The results show a predominance of classical machine learning techniques, with limited implementation of deep learning models. The most common applications include image classification, yield prediction, and analysis of bioactive compounds. However, limitations remain in the availability of open data, reproducible code, and standardized metrics. The narrative synthesis identified clear opportunities to integrate emerging technologies, such as deep neural networks and the Internet of Things (IoT), particularly in water management and stress monitoring. The review concludes that strengthening interdisciplinary research and promoting data openness is key to achieving a more resilient, sustainable, and technologically advanced crop.

Suggested Citation

  • Alfonso Ramírez-Pedraza & Juan Terven & José-Joel González-Barbosa & Juan-Bautista Hurtado-Ramos & Diana-Margarita Córdova-Esparza & Francisco-Javier Ornelas-Rodríguez & Raymundo Ramirez-Pedraza & Jul, 2025. "Overview of Artificial Intelligence Applications in Roselle (Hibiscus sabdariffa) from Cultivation to Post-Harvest: Challenges and Opportunities," Agriculture, MDPI, vol. 15(16), pages 1-46, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:16:p:1758-:d:1725948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/16/1758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/16/1758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gyung Doeok Han & GyuJin Jang & Jaeyoung Kim & Dong-Wook Kim & Renato Rodrogues & Seong-Hoon Kim & Hak-Jin Kim & Yong Suk Chung, 2021. "RGB images-based vegetative index for phenotyping kenaf (Hibiscus cannabinus L.)," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-15, September.
    2. Abdoudramane Sanou & Kiessoun Konate & Roger Dakuyo & Kaboré Kabore & Hemayoro Sama & Mamoudou Hama Dicko, 2022. "Hibiscus sabdariffa: Genetic variability, seasonality and their impact on nutritional and antioxidant properties," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.
    3. Dania Tamayo-Vera & Xiuquan Wang & Morteza Mesbah, 2024. "A Review of Machine Learning Techniques in Agroclimatic Studies," Agriculture, MDPI, vol. 14(3), pages 1-19, March.
    4. José-Joel González-Barbosa & Alfonso Ramírez-Pedraza & Francisco-Javier Ornelas-Rodríguez & Diana-Margarita Cordova-Esparza & Erick-Alejandro González-Barbosa, 2022. "Dynamic Measurement of Portos Tomato Seedling Growth Using the Kinect 2.0 Sensor," Agriculture, MDPI, vol. 12(4), pages 1-24, March.
    5. David A. Vargas & Nathaly Vargas & Andrea M. Osorio-Doblado & Juan A. Ruano-Ortiz & Fábio G. M. de Medeiros & Roberta T. Hoskin & Marvin Moncada, 2024. "Valorization of Hibiscus Flower ( Hibiscus sabdariffa L.) Anthocyanins to Produce Sustainable Spray-Dried Ingredients," Sustainability, MDPI, vol. 16(13), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordana Kaplan & Mateo Gašparović & Onur Kaplan & Vancho Adjiski & Resul Comert & Mohammad Asef Mobariz, 2023. "Machine Learning-Based Classification of Asbestos-Containing Roofs Using Airborne RGB and Thermal Imagery," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    2. Juan Botero-Valencia & Vanessa García-Pineda & Alejandro Valencia-Arias & Jackeline Valencia & Erick Reyes-Vera & Mateo Mejia-Herrera & Ruber Hernández-García, 2025. "Machine Learning in Sustainable Agriculture: Systematic Review and Research Perspectives," Agriculture, MDPI, vol. 15(4), pages 1-37, February.
    3. Bo Hwan Kim & Hyeok Kwon & Wook Kim, 2024. "Deciphering individual triticale grain weight patterns: A gaussian mixture model approach," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-19, November.
    4. Jeongho Han & Joo Hyun Bae, 2024. "Developing an Hourly Water Level Prediction Model for Small- and Medium-Sized Agricultural Reservoirs Using AutoML: Case Study of Baekhak Reservoir, South Korea," Agriculture, MDPI, vol. 15(1), pages 1-21, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:16:p:1758-:d:1725948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.