IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i14p1537-d1703213.html
   My bibliography  Save this article

Design and Evaluation of a Novel Actuated End Effector for Selective Broccoli Harvesting in Dense Planting Conditions

Author

Listed:
  • Zhiyu Zuo

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

  • Yue Xue

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Sheng Gao

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shenghe Zhang

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qingqing Dai

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Guoxin Ma

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

  • Hanping Mao

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China)

Abstract

The commercialization of selective broccoli harvesters, a critical response to agricultural labor shortages, is hampered by end effectors with large operational envelopes and poor adaptability to complex field conditions. To address these limitations, this study developed and evaluated a novel end-effector with an integrated transverse cutting mechanism and a foldable grasping cavity. Unlike conventional fixed cylindrical cavities, our design utilizes actuated grasping arms and a mechanical linkage system to significantly reduce the operational footprint and enhance maneuverability. Key design parameters were optimized based on broccoli morphological data and experimental measurements of the maximum stem cutting force. Furthermore, dynamic simulations were employed to validate the operational trajectory and ensure interference-free motion. Field tests demonstrated an operational success rate of 93.33% and a cutting success rate of 92.86%. The end effector successfully operated in dense planting environments, effectively avoiding interference with adjacent broccoli heads. This research provides a robust and promising solution that advances the automation of broccoli harvesting, paving the way for the commercial adoption of robotic harvesting technologies.

Suggested Citation

  • Zhiyu Zuo & Yue Xue & Sheng Gao & Shenghe Zhang & Qingqing Dai & Guoxin Ma & Hanping Mao, 2025. "Design and Evaluation of a Novel Actuated End Effector for Selective Broccoli Harvesting in Dense Planting Conditions," Agriculture, MDPI, vol. 15(14), pages 1-27, July.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1537-:d:1703213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/14/1537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/14/1537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Tai & Zhong Tang & Bin Li & Shiguo Wang & Xiaohu Guo, 2025. "Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements," Agriculture, MDPI, vol. 15(11), pages 1-26, May.
    2. Kehong Yan & Shuai Yao & Yicheng Huang & Zhan Zhao, 2023. "Study on Pulling Dynamic Characteristics of White Radish and the Optimal Design of a Harvesting Device," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    3. Huimin Xu & Gaohong Yu & Chenyu Niu & Xiong Zhao & Yimiao Wang & Yijin Chen, 2023. "Design and Experiment of an Underactuated Broccoli-Picking Manipulator," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiquan Fang & Xinzhong Wang & Changshun Zhu & Dianlei Han & Nan Zang & Xuegeng Chen, 2024. "Analysis of Film Unloading Mechanism and Parameter Optimization of Air Suction-Type Cotton Plough Residual Film Recovery Machine Based on CFD—DEM Coupling," Agriculture, MDPI, vol. 14(7), pages 1-19, June.
    2. Sheng Tai & Zhong Tang & Bin Li & Shiguo Wang & Xiaohu Guo, 2025. "Cumin-Harvesting Mechanization of the Xinjiang Cotton–Cumin Intercropping System: Review of the Problem Status and Solutions," Agriculture, MDPI, vol. 15(8), pages 1-24, April.
    3. Xiao Xiao & Fangping Xie & Zhouqiao Zhao & Dawei Liu & Xiushan Wang, 2023. "Design and Experimentation of a Self-Propelled Picking Type White Radish Combine Harvester," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    4. Cheng Shen & Zhong Tang & Maohua Xiao, 2023. "“Eyes”, “Brain”, “Feet” and “Hands” of Efficient Harvesting Machinery," Agriculture, MDPI, vol. 13(10), pages 1-3, September.
    5. Kairan Lou & Zongbin Wang & Bin Zhang & Qiu Xu & Wei Fu & Yang Gu & Jinyi Liu, 2024. "Analysis and Experimentation on the Motion Characteristics of a Dragon Fruit Picking Robot Manipulator," Agriculture, MDPI, vol. 14(11), pages 1-20, November.
    6. Haonan Shi & Gaoming Xu & Wei Lu & Qishuo Ding & Xinxin Chen, 2024. "An Electric Gripper for Picking Brown Mushrooms with Flexible Force and In Situ Measurement," Agriculture, MDPI, vol. 14(7), pages 1-15, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1537-:d:1703213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.