IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1649-d1482234.html
   My bibliography  Save this article

Vegetation Phenology Changes and Recovery after an Extreme Rainfall Event: A Case Study in Henan Province, China

Author

Listed:
  • Yinghao Lin

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China
    Shenzhen Research Institute of Henan University, Shenzhen 518000, China)

  • Xiaoyu Guo

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

  • Yang Liu

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

  • Liming Zhou

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

  • Yadi Wang

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China
    Shenzhen Research Institute of Henan University, Shenzhen 518000, China)

  • Qiang Ge

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

  • Yuye Wang

    (Henan Key Laboratory of Big Data Analysis and Processing, School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

Abstract

Extreme rainfall can severely affect all vegetation types, significantly impacting crop yield and quality. This study aimed to assess the response and recovery of vegetation phenology to an extreme rainfall event (with total weekly rainfall exceeding 500 mm in several cities) in Henan Province, China, in 2021. The analysis utilized multi-sourced data, including remote sensing reflectance, meteorological, and crop yield data. First, the Normalized Difference Vegetation Index (NDVI) time series was calculated from reflectance data on the Google Earth Engine (GEE) platform. Next, the ‘phenofit’ R language package was used to extract the phenology parameters—the start of the growing season (SOS) and the end of the growing season (EOS). Finally, the Statistical Package for the Social Sciences (SPSS, v.26.0.0.0) software was used for Duncan’s analysis, and Matrix Laboratory (MATLAB, v.R2022b) software was used to analyze the effects of rainfall on land surface phenology (LSP) and crop yield. The results showed the following. (1) The extreme rainfall event’s impact on phenology manifested directly as a delay in EOS in the year of the event. In 2021, the EOS of the second growing season was delayed by 4.97 days for cropland, 15.54 days for forest, 13.06 days for grassland, and 12.49 days for shrubland. (2) Resistance was weak in 2021, but recovery reached in most areas by 2022 and slowed in 2023. (3) In each year, SOS was predominantly negatively correlated with total rainfall in July (64% of cropland area in the first growing season, 53% of grassland area, and 71% of shrubland area). In contrast, the EOS was predominantly positively correlated with rainfall (51% and 54% area of cropland in the first and second growing season, respectively, and 76% of shrubland area); however, crop yields were mainly negatively correlated with rainfall (71% for corn, 60% for beans) and decreased during the year of the event, with negative correlation coefficients between rainfall and yield (−0.02 for corn, −0.25 for beans). This work highlights the sensitivity of crops to extreme rainfall and underscores the need for further research on their long-term recovery.

Suggested Citation

  • Yinghao Lin & Xiaoyu Guo & Yang Liu & Liming Zhou & Yadi Wang & Qiang Ge & Yuye Wang, 2024. "Vegetation Phenology Changes and Recovery after an Extreme Rainfall Event: A Case Study in Henan Province, China," Agriculture, MDPI, vol. 14(9), pages 1-19, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1649-:d:1482234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Shahinoor Rahman & Liping Di, 2020. "A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment," Agriculture, MDPI, vol. 10(4), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Wang & Zhanyan Liu & Huili Chen, 2022. "Investigating Flood Impact on Crop Production under a Comprehensive and Spatially Explicit Risk Evaluation Framework," Agriculture, MDPI, vol. 12(4), pages 1-23, March.
    2. Ilan Noy & Elodie Blanc & Madhavi Pundit & Tomas Uher, 2023. "Nowcasting from space: tropical cyclones’ impacts on Fiji’s agriculture," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1707-1738, September.
    3. Takanori Kuronuma & Hitoshi Watanabe, 2021. "Identification of the Causative Genes of Calcium Deficiency Disorders in Horticulture Crops: A Systematic Review," Agriculture, MDPI, vol. 11(10), pages 1-18, September.
    4. Hao, Pengyu & Di, Liping & Guo, Liying, 2022. "Estimation of crop evapotranspiration from MODIS data by combining random forest and trapezoidal models," Agricultural Water Management, Elsevier, vol. 259(C).
    5. Elodie Blanc & Ilan Noy, 2022. "Impacts of Droughts and Floods on Agricultural Productivity in New Zealand as Measured from Space," CESifo Working Paper Series 9634, CESifo.
    6. Zhengrong Liu & Huanjun Liu & Chong Luo & Haoxuan Yang & Xiangtian Meng & Yongchol Ju & Dong Guo, 2020. "Rapid Extraction of Regional-scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    7. Ilan Noy & Elodie Blanc & Madhavi Pundit & Tomas Uher, 2023. "Nowcasting from Space: Impact of Tropical Cyclones on Fiji’s Agriculture," ADB Economics Working Paper Series 676, Asian Development Bank.
    8. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.
    9. Samuele, De Petris & Federica, Ghilardi & Filippo, Sarvia & Enrico, Borgogno-Mondino, 2022. "A simplified method for water depth mapping over crops during flood based on Copernicus and DTM open data," Agricultural Water Management, Elsevier, vol. 269(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1649-:d:1482234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.