IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p293-d1337384.html
   My bibliography  Save this article

Insights into the Belowground Biodiversity and Soil Nutrient Status of an Organic Apple Orchard as Affected by Living Mulches

Author

Listed:
  • Ewa M. Furmanczyk

    (Department of Plant Protection, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland)

  • Eligio Malusà

    (Department of Plant Protection, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland)

  • Dawid Kozacki

    (Department of Plant Protection, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland)

  • Malgorzata Tartanus

    (Department of Plant Protection, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland)

Abstract

The impact of living mulches established with three officinal plants ( Alchemilla vulgaris , Fragaria vesca and Mentha x piperita ) on the soil bacterial microbiome and activity, the nematodes population, and the nutrient status of an organic apple orchard was assessed. The composition and diversity of the bacterial communities were differentially modified by living mulches. The activity of the bacterial microbiome associated with F. vesca was higher and utilized more C sources in comparison to other treatments. The combined analysis of the core bacterial microbiome and metabolic activity pointed to a potential effect of F. vesca on different levels of the soil’s trophic network. The living mulches did not affect the overall number of nematodes, but in some cases, they modified the structure of the population: F. vesca induced the highest share of bacteria feeders and the lowest number of herbivores and fungal feeders. The living mulches modified the availability of some nutrients and the pH. Multivariate analysis of the whole dataset showed several potential inter-dependencies between the assessed parameters that are worthy of further study. In conclusion, the introduction of multifunctional living mulches based on officinal plants induced changes to the soil’s genetic and functional biodiversity and chemical properties. These modifications could deliver ecosystem services particularly relevant to organic apple orchards.

Suggested Citation

  • Ewa M. Furmanczyk & Eligio Malusà & Dawid Kozacki & Malgorzata Tartanus, 2024. "Insights into the Belowground Biodiversity and Soil Nutrient Status of an Organic Apple Orchard as Affected by Living Mulches," Agriculture, MDPI, vol. 14(2), pages 1-21, February.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:293-:d:1337384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Huihui Ding & Wensheng Chen & Jiangrong Li & Fangwei Fu & Yueyao Li & Siying Xiao, 2023. "Physiological Characteristics and Cold Resistance of Five Woody Plants in Treeline Ecotone of Sygera Mountains," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    3. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    4. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    5. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    6. Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    7. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    9. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Nadal, Miquel & Flexas, Jaume, 2019. "Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops," Agricultural Water Management, Elsevier, vol. 216(C), pages 457-472.
    11. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    12. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Valentin Journé & Andrew Hacket-Pain & Michał Bogdziewicz, 2023. "Evolution of masting in plants is linked to investment in low tissue mortality," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Margot Neyret & Gaëtane Provost & Andrea Larissa Boesing & Florian D. Schneider & Dennis Baulechner & Joana Bergmann & Franciska T. Vries & Anna Maria Fiore-Donno & Stefan Geisen & Kezia Goldmann & An, 2024. "A slow-fast trait continuum at the whole community level in relation to land-use intensification," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    15. Lamthai Asanok & Rungrawee Taweesuk & Torlarp Kamyo, 2021. "Plant Functional Diversity Is Linked to Carbon Storage in Deciduous Dipterocarp Forest Edges in Northern Thailand," Sustainability, MDPI, vol. 13(20), pages 1-12, October.
    16. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).
    18. David S. Ellsworth & Kristine Y. Crous & Martin G. Kauwe & Lore T. Verryckt & Daniel Goll & Sönke Zaehle & Keith J. Bloomfield & Philippe Ciais & Lucas A. Cernusak & Tomas F. Domingues & Mirindi Eric , 2022. "Convergence in phosphorus constraints to photosynthesis in forests around the world," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.
    20. He, Yuelin & Li, Guangde & Xi, Benye & Zhao, Hui & Jia, Liming, 2022. "Fine root plasticity of young Populus tomentosa plantations under drip irrigation and nitrogen fertigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:293-:d:1337384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.