IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p654-d1093917.html
   My bibliography  Save this article

Individual and Interactive Effects of Nitrogen and Phosphorus on Drought Stress Response and Recovery in Maize Seedlings

Author

Listed:
  • Temesgen Assefa Gelaw

    (Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
    Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan 445, Ethiopia)

  • Kavita Goswami

    (Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India)

  • Neeti Sanan-Mishra

    (Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India)

Abstract

Plants have an inherent mechanism for perceiving drought stress and respond through a series of physiological, cellular and molecular changes for maintaining physiological water balance. It has been shown that nitrogen (N) and phosphate (P) can help to improve plant tolerance to water limitation by increasing the activities of the photosynthetic machinery and antioxidant enzymes. Maize is highly sensitive to drought stress, especially at the seedling stage. In this study, we used four maize genotypes (HKI-161, HKI-193-1, HQPM-1 and HQPM-7) and studied the effect of N and P application on response to drought stress and recovery at germination and seedling stage. We show that application of N and P had no effect on rate of germination but increased the seedling growth, chlorophyll content, malondialdehyde levels, proline, anthocyanin content, gas exchange parameters and antioxidant enzymes (APX, CAT and GR) during drought stress. The variation in the effect was visible across genotypes, but the observed changes indicate improved drought stress tolerance in the maize seedlings. During drought recovery, seedlings of HKI-161 and HKI-193-1 genotype that did not receive N and/or P treatment or that were pre-supplemented with only P showed rapid transition to flowering stages. Seedlings pretreated with N showed comparatively late transition to flowering. The HQPM-1 seedlings, which received N treatment moved to flowering stage while HQPM-7 seedlings showed only normal vegetative growth under all treatment conditions. Molecular analysis identified 2016 transcripts that are differentially expressed in the drought tolerant and susceptible genotypes. About 947 transcripts showed >3-fold change in expression and were expressed during stress tolerant genotype. Transcripts coding for proteins in P and N metabolism were identified within the drought regulated transcripts. The analysis showed that transcripts related to P metabolism were expressed during stress and recovery phases in the susceptible genotype while transcripts related to N metabolism were down regulated during drought stress and recovery stages in all the genotypes.

Suggested Citation

  • Temesgen Assefa Gelaw & Kavita Goswami & Neeti Sanan-Mishra, 2023. "Individual and Interactive Effects of Nitrogen and Phosphorus on Drought Stress Response and Recovery in Maize Seedlings," Agriculture, MDPI, vol. 13(3), pages 1-33, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:654-:d:1093917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Studer & Yuncai Hu & Urs Schmidhalter, 2017. "Interactive Effects of N-, P- and K-Nutrition and Drought Stress on the Development of Maize Seedlings," Agriculture, MDPI, vol. 7(11), pages 1-12, October.
    2. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.
    2. Jurica Primorac & Hrvoje Šarčević & Zrinka Knezović & Aleš Vokurka & Ana Mandić & Snježana Bolarić, 2023. "Changes in Allele Frequencies and Genetic Diversity in Red Clover after Selection for Cold Tolerance Using SSR Markers," Agriculture, MDPI, vol. 13(10), pages 1-13, October.
    3. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    4. Sujarwo & Aditya Nugraha Putra & Raden Arief Setyawan & Heitor Mancini Teixeira & Uma Khumairoh, 2022. "Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    5. Nicholas M. Short & M. Jennifer Woodward-Greene & Michael D. Buser & Daniel P. Roberts, 2023. "Scalable Knowledge Management to Meet Global 21st Century Challenges in Agriculture," Land, MDPI, vol. 12(3), pages 1-19, February.
    6. Andi Amran Sulaiman & Yiyi Sulaeman & Budiman Minasny, 2019. "A Framework for the Development of Wetland for Agricultural Use in Indonesia," Resources, MDPI, vol. 8(1), pages 1-16, February.
    7. Volkov, Artiom & Morkunas, Mangirdas & Balezentis, Tomas & Streimikiene, Dalia, 2022. "Are agricultural sustainability and resilience complementary notions? Evidence from the North European agriculture," Land Use Policy, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:654-:d:1093917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.