IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1083-d869503.html
   My bibliography  Save this article

Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network

Author

Listed:
  • Weidong Zhu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jun Sun

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Simin Wang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jifeng Shen

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Kaifeng Yang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xin Zhou

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The yield and security of grain are seriously infringed on by crop diseases, which are the critical factor hindering the green and high-quality development of agriculture. The existing crop disease identification models make it difficult to focus on the disease spot area. Additionally, crops with similar disease characteristics are easily misidentified. To address the above problems, this paper proposed an accurate and efficient disease identification model, which not only incorporated local and global features of images for feature analysis, but also improved the separability between similar diseases. First, Transformer Encoder was introduced into the improved model as a convolution operation, so as to establish the dependency between long-distance features and extract the global features of the disease images. Then, Centerloss was introduced as a penalty term to optimize the common cross-entropy loss, so as to expand the inter-class difference of crop disease characteristics and narrow their intra-class gap. Finally, according to the characteristics of the datasets, a more appropriate evaluation index was used to carry out experiments on different datasets. The identification accuracy of 99.62% was obtained on Plant Village, and the balanced accuracy of 96.58% was obtained on Dataset1 with a complex background. It showed good generalization ability when facing disease images from different sources. The improved model also balanced the contradiction between identification accuracy and parameter quantity. Compared with pure CNN and Transformer models, the leaf disease identification model proposed in this paper not only focuses more on the disease regions of leaves, but also better distinguishes different diseases with similar characteristics.

Suggested Citation

  • Weidong Zhu & Jun Sun & Simin Wang & Jifeng Shen & Kaifeng Yang & Xin Zhou, 2022. "Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1083-:d:869503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yeong Hyeon Gu & Helin Yin & Dong Jin & Ri Zheng & Seong Joon Yoo, 2022. "Improved Multi-Plant Disease Recognition Method Using Deep Convolutional Neural Networks in Six Diseases of Apples and Pears," Agriculture, MDPI, vol. 12(2), pages 1-12, February.
    2. Abozar Nasirahmadi & Ulrike Wilczek & Oliver Hensel, 2021. "Sugar Beet Damage Detection during Harvesting Using Different Convolutional Neural Network Models," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    3. Jun Sun & Xiaofei He & Xiao Ge & Xiaohong Wu & Jifeng Shen & Yingying Song, 2018. "Detection of Key Organs in Tomato Based on Deep Migration Learning in a Complex Background," Agriculture, MDPI, vol. 8(12), pages 1-15, December.
    4. Peng Xu & Qian Tan & Yunpeng Zhang & Xiantao Zha & Songmei Yang & Ranbing Yang, 2022. "Research on Maize Seed Classification and Recognition Based on Machine Vision and Deep Learning," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    2. Piotr Boniecki & Agnieszka Sujak & Gniewko Niedbała & Hanna Piekarska-Boniecka & Agnieszka Wawrzyniak & Andrzej Przybylak, 2023. "Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications," Agriculture, MDPI, vol. 13(4), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wang & Jiang Liu & Lijia Xu & Peng Huang & Xiong Luo & Yan Hu & Zhiliang Kang, 2021. "Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    2. Piotr Boniecki & Maciej Zaborowicz & Agnieszka Pilarska & Hanna Piekarska-Boniecka, 2020. "Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN," Agriculture, MDPI, vol. 10(6), pages 1-9, June.
    3. Haiqing Wang & Shuqi Shang & Dongwei Wang & Xiaoning He & Kai Feng & Hao Zhu, 2022. "Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    4. Yue Gu & Shucai Wang & Yu Yan & Shijie Tang & Shida Zhao, 2022. "Identification and Analysis of Emergency Behavior of Cage-Reared Laying Ducks Based on YoloV5," Agriculture, MDPI, vol. 12(4), pages 1-16, March.
    5. Yu Wang & Hongyi Bai & Laijun Sun & Yan Tang & Yonglong Huo & Rui Min, 2022. "The Rapid and Accurate Detection of Kidney Bean Seeds Based on a Compressed Yolov3 Model," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    6. Zeqing Yang & Zhimeng Li & Ning Hu & Mingxuan Zhang & Wenbo Zhang & Lingxiao Gao & Xiangyan Ding & Zhengpan Qi & Shuyong Duan, 2023. "Multi-Index Grading Method for Pear Appearance Quality Based on Machine Vision," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    7. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    8. Lili Yang & Changlong Wang & Jianfeng Yu & Nan Xu & Dongwei Wang, 2023. "Method of Peanut Pod Quality Detection Based on Improved ResNet," Agriculture, MDPI, vol. 13(7), pages 1-20, July.
    9. Dimitre D. Dimitrov, 2023. "Internet and Computers for Agriculture," Agriculture, MDPI, vol. 13(1), pages 1-7, January.
    10. Piotr Boniecki & Krzysztof Koszela & Krzysztof Świerczyński & Jacek Skwarcz & Maciej Zaborowicz & Jacek Przybył, 2020. "Neural Visual Detection of Grain Weevil ( Sitophilus granarius L.)," Agriculture, MDPI, vol. 10(1), pages 1-9, January.
    11. Peng Wang & Tong Niu & Dongjian He, 2021. "Tomato Young Fruits Detection Method under Near Color Background Based on Improved Faster R-CNN with Attention Mechanism," Agriculture, MDPI, vol. 11(11), pages 1-13, October.
    12. Kadir Sabanci, 2023. "Benchmarking of CNN Models and MobileNet-BiLSTM Approach to Classification of Tomato Seed Cultivars," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    13. Chung-Liang Chang & Bo-Xuan Xie & Sheng-Cheng Chung, 2021. "Mechanical Control with a Deep Learning Method for Precise Weeding on a Farm," Agriculture, MDPI, vol. 11(11), pages 1-21, October.
    14. Guangyu Hou & Haihua Chen & Mingkun Jiang & Runxin Niu, 2023. "An Overview of the Application of Machine Vision in Recognition and Localization of Fruit and Vegetable Harvesting Robots," Agriculture, MDPI, vol. 13(9), pages 1-31, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1083-:d:869503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.