Author
Listed:
- Xing Zhang
(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China)
- Yuexiang Luo
(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China)
- Tianning Li
(School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)
Abstract
Federated learning (FL) is an advanced distributed machine learning method that effectively solves the data silo problem. With the increasing popularity of federated learning and the growing importance of privacy protection, federated learning methods that can securely aggregate models have received widespread attention. Federated learning enables clients to train models locally and share their model updates with the server. While this approach allows collaborative model training without exposing raw data, it still risks leaking sensitive information. To enhance privacy protection in federated learning, secure aggregation is considered a key enabling technology that requires further in-depth investigation. This paper summarizes the definition, classification, and applications of federated learning; reviews secure aggregation protocols proposed to address privacy and security issues in federated learning; extensively analyzes the selected protocols; and concludes by highlighting the significant challenges and future research directions in applying secure aggregation in federated learning. The purpose of this paper is to review and analyze prior research, evaluate the advantages and disadvantages of various secure aggregation schemes, and propose potential future research directions. This work aims to serve as a valuable reference for researchers studying secure aggregation in federated learning.
Suggested Citation
Xing Zhang & Yuexiang Luo & Tianning Li, 2025.
"A Review of Research on Secure Aggregation for Federated Learning,"
Future Internet, MDPI, vol. 17(7), pages 1-39, July.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:7:p:308-:d:1703826
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:7:p:308-:d:1703826. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.