IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i11p574-d449745.html
   My bibliography  Save this article

Physiological and Phytochemical Responses of Spinach Baby Leaves Grown in a PFAL System with LEDs and Saline Nutrient Solution

Author

Listed:
  • Filippos Bantis

    (Department of Horticulture, Aristotle University, 54124 Thessaloniki, Greece)

  • Mariangela Fotelli

    (Forest Research Institute of Thessaloniki, Greek Agricultural Organization-Dimitra, Vassilika, 57006 Thessaloniki, Greece)

  • Zoran S. Ilić

    (Faculty of Agriculture, University of Priština-Kosovska Mitrovica, 38219 Lešak, Serbia)

  • Athanasios Koukounaras

    (Department of Horticulture, Aristotle University, 54124 Thessaloniki, Greece)

Abstract

Spinach is a leafy vegetable containing a plethora of bioactive compounds. Our study aimed to evaluate the physiological (i.e., JIP-test) and phytochemical response of spinach baby leaves grown with regular or mildly saline (40 mM NaCl) nutrient solution and irradiated by four light-emitting diodes (LEDs) with broad spectra. T1 (highest red and far-red, low blue) and T3 (high red, balanced blue, green and far-red) led to a better developed photosynthetic apparatus compared to T2 (red peak in 631 nm) and T4 (highest blue and green), highlighted by PI ABS and its structural components: RC/ABS, φ P0 , ψ E0 , and ΔV IP . Elevated salinity only affected the latter parameter. T1 induced the maximum yield production but also the highest nitrate content which was far below the maximum level permitted by European legislation. Regardless of salinity level, T3 enhanced total phenol, chlorophyll, and carotenoid content. T2 and T4 led to inferior nutritional quality. Non-saline nutrient solution promoted the chlorophyll and carotenoid contents and the antioxidant potential, regardless of light treatment. By contrast, soluble sugar content was enhanced by saline nutrient solution. Our study shows that physiology and nutritional quality of spinach baby leaves can be manipulated by small interplays in the light spectra and salinity level.

Suggested Citation

  • Filippos Bantis & Mariangela Fotelli & Zoran S. Ilić & Athanasios Koukounaras, 2020. "Physiological and Phytochemical Responses of Spinach Baby Leaves Grown in a PFAL System with LEDs and Saline Nutrient Solution," Agriculture, MDPI, vol. 10(11), pages 1-12, November.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:574-:d:449745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/11/574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/11/574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vahid Gholami & Zabihollah Yousefi & Hosseinali Zabardast Rostami, 2010. "Modeling of Ground Water Salinity on the Caspian Southern Coasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1415-1424, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoanela Patras, 2021. "Effects of Development Stage and Sodium Salts on the Antioxidant Properties of White Cabbage Microgreens," Agriculture, MDPI, vol. 11(3), pages 1-10, February.
    2. Christos Melissas & Filippos Bantis & Christodoulos Dangitsis & Stefanos Kostas & Athanasios Koukounaras, 2022. "Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock," Agriculture, MDPI, vol. 12(6), pages 1-12, May.
    3. Filippos Bantis & Chrysos Kaponas & Charalambos Charalambous & Athanasios Koukounaras, 2021. "Strategic Successive Harvesting of Rocket and Spinach Baby Leaves Enhanced Their Quality and Production Efficiency," Agriculture, MDPI, vol. 11(5), pages 1-10, May.
    4. Giorgia Santini & Valeria Memoli & Ermenegilda Vitale & Gabriella Di Natale & Marco Trifuoggi & Giulia Maisto & Lucia Santorufo, 2023. "Metal Release from Microplastics to Soil: Effects on Soil Enzymatic Activities and Spinach Production," IJERPH, MDPI, vol. 20(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issam Nouiri & Muluneh Yitayew & Jobst Maßmann & Jamila Tarhouni, 2015. "Multi-objective Optimization Tool for Integrated Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5353-5375, November.
    2. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    3. Hongnian Chen & Xianfeng Tan & Yan Zhang & Bo Hu & Shuming Xu & Zhenfen Dai & Zhengxuan Zhang & Zhiye Wang & Yawei Zhang, 2023. "Study on Groundwater Function Zoning and Sustainable Development and Utilization in Jining City Planning Area," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    4. Vahid GHOLAMI & Mohamad Reza KHALEGHI, 2013. "The impact of vegetation on the bank erosion (Case study: The Haraz River)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 8(4), pages 158-164.
    5. Guohua Fan & Baodeng Hou & Xinsheng Dong & Xiaowen Ding, 2021. "Technical Points of Water-Draw and Discharge Impact Analysis in Guidelines for Water Resource Assessment of Coastal Nuclear Power Plants," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    6. M. Salahat & M. Al-Qinna & K. Mashal & N. Hammouri, 2014. "Identifying Major Factors Controlling Groundwater Quality in Semiarid Area Using Advanced Statistical Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3829-3841, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:574-:d:449745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.