IDEAS home Printed from https://ideas.repec.org/a/eme/rafpps/raf-02-2023-0045.html
   My bibliography  Save this article

Another look at the asymmetric relationship between stock returns and trading volume: evidence from the Markov-switching model

Author

Listed:
  • Mondher Bouattour
  • Anthony Miloudi

Abstract

Purpose - The purpose of this paper is to bridge the gap between the existing theoretical and empirical studies by examining the asymmetric return–volume relationship. Indeed, the authors aim to shed light on the return–volume linkages for French-listed small and medium-sized enterprises (SMEs) compared to blue chips across different market regimes. Design/methodology/approach - This study includes both large capitalizations included in the CAC 40 index and listed SMEs included in the Euronext Growth All Share index. The Markov-switching (MS) approach is applied to understand the asymmetric relationship between trading volume and stock returns. The study investigates also the causal impact between stock returns and trading volume using regime-dependent Granger causality tests. Findings - Asymmetric contemporaneous and lagged relationships between stock returns and trading volume are found for both large capitalizations and listed SMEs. However, the causality investigation reveals some differences between large capitalizations and SMEs. Indeed, causal relationships depend on market conditions and the size of the market. Research limitations/implications - This paper explains the asymmetric return–volume relationship for both large capitalizations and listed SMEs by incorporating several psychological biases, such as the disposition effect, investor overconfidence and self-attribution bias. Future research needs to deepen the analysis especially for SMEs as most of the literature focuses on large capitalizations. Practical implications - This empirical study has fundamental implications for portfolio management. The findings provide a deeper understanding of how trading activity impact current returns and vice versa. The authors’ results constitute an important input to build and control trading strategies. Originality/value - This paper fills the literature gap on the asymmetric return–volume relationship across different regimes. To the best of the authors’ knowledge, the present study is the first empirical attempt to test the asymmetric return–volume relationship for listed SMEs by using an accurate MS framework.

Suggested Citation

  • Mondher Bouattour & Anthony Miloudi, 2023. "Another look at the asymmetric relationship between stock returns and trading volume: evidence from the Markov-switching model," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 23(2), pages 256-279, December.
  • Handle: RePEc:eme:rafpps:raf-02-2023-0045
    DOI: 10.1108/RAF-02-2023-0045
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RAF-02-2023-0045/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RAF-02-2023-0045/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/RAF-02-2023-0045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Stock returns; Turnover; Listed SMEs; Markov-switching model; Regime-dependent Granger causality; Behavioral bias; C32; G10; G12;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:rafpps:raf-02-2023-0045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.