IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v176y2023ics1366554523001692.html
   My bibliography  Save this article

Improving relief operations via optimizing shelter location with uncertain covariates

Author

Listed:
  • Zhang, Mengling
  • Zhang, Yanzi
  • Jiao, Zihao
  • Wang, Jing

Abstract

Designing an efficient shelter location planning is crucial to the rapid implementation of relief operations under the uncertain number of casualties. In practice, the uncertain number of casualties is closely related to disaster severity, whereas previous studies ignore such correlations when modeling uncertainties. In this paper, the scenario-wise ambiguity set is adopted to capture the correlation between the uncertain number of casualties and uncertain covariates, i.e., disaster severity. We develop a two-stage scenario-wise distributionally robust (SDR) model, where the shelter location and capacity allocation decisions are made here-and-now, and recourse decisions to transport casualties are made after the uncertainties on the number of casualties and covariate information have been realized. We approximate the non-convex model into a tractable form, i.e., second-order cone programming (SOCP), which can be solved efficiently by an outer approximation (OA) algorithm for a large-scale computation case. The numerical results with real-world data show that covariate integration (CVI) can contribute to saving costs and improving relief efficiency, and illustrate the computational superiority of the proposed OA algorithm. The results further demonstrate that establishing shelters with large capacities and near the affected areas has indeed had a positive impact on improving relief efficiency.

Suggested Citation

  • Zhang, Mengling & Zhang, Yanzi & Jiao, Zihao & Wang, Jing, 2023. "Improving relief operations via optimizing shelter location with uncertain covariates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transe:v:176:y:2023:i:c:s1366554523001692
    DOI: 10.1016/j.tre.2023.103181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523001692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:176:y:2023:i:c:s1366554523001692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.