IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v108y2016icp13-23.html
   My bibliography  Save this article

On joint subtree distributions under two evolutionary models

Author

Listed:
  • Wu, Taoyang
  • Choi, Kwok Pui

Abstract

In population and evolutionary biology, hypotheses about micro-evolutionary and macro-evolutionary processes are commonly tested by comparing the shape indices of empirical evolutionary trees with those predicted by neutral models. A key ingredient in this approach is the ability to compute and quantify distributions of various tree shape indices under random models of interest. As a step to meet this challenge, in this paper we investigate the joint distribution of cherries and pitchforks (that is, subtrees with two and three leaves) under two widely used null models: the Yule–Harding–Kingman (YHK) model and the proportional to distinguishable arrangements (PDA) model. Based on two novel recursive formulae, we propose a dynamic approach to numerically compute the exact joint distribution (and hence the marginal distributions) for trees of any size. We also obtained insights into the statistical properties of trees generated under these two models, including a constant correlation between the cherry and the pitchfork distributions under the YHK model, and the log-concavity and unimodality of the cherry distributions under both models. In addition, we show that there exists a unique change point for the cherry distributions between these two models.

Suggested Citation

  • Wu, Taoyang & Choi, Kwok Pui, 2016. "On joint subtree distributions under two evolutionary models," Theoretical Population Biology, Elsevier, vol. 108(C), pages 13-23.
  • Handle: RePEc:eee:thpobi:v:108:y:2016:i:c:p:13-23
    DOI: 10.1016/j.tpb.2015.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915001215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Sha & Degnan, James H. & Steel, Mike, 2011. "Clades, clans, and reciprocal monophyly under neutral evolutionary models," Theoretical Population Biology, Elsevier, vol. 79(4), pages 220-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Kwok Pui & Thompson, Ariadne & Wu, Taoyang, 2020. "On cherry and pitchfork distributions of random rooted and unrooted phylogenetic trees," Theoretical Population Biology, Elsevier, vol. 132(C), pages 92-104.
    2. Kaur, Gursharn & Choi, Kwok Pui & Wu, Taoyang, 2023. "Distributions of cherries and pitchforks for the Ford model," Theoretical Population Biology, Elsevier, vol. 149(C), pages 27-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Disanto, Filippo & Wiehe, Thomas, 2020. "Measuring the external branches of a Kingman tree: A discrete approach," Theoretical Population Biology, Elsevier, vol. 134(C), pages 92-105.
    2. Eldon, Bjarki & Degnan, James H., 2012. "Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents," Theoretical Population Biology, Elsevier, vol. 82(2), pages 117-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:108:y:2016:i:c:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.