IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i9p2060-2066.html
   My bibliography  Save this article

Parametric estimation for the scale parameter for scale distributions using moving extremes ranked set sampling

Author

Listed:
  • Chen, Wangxue
  • Xie, Minyu
  • Wu, Ming

Abstract

A modification of ranked set sampling (RSS) called moving extremes ranked set sampling (MERSS) is considered for the estimation of the scale parameter of scale distributions. A maximum likelihood estimator (MLE) is studied and its properties are obtained. We prove the MLE is an equivariant estimator under scale transformation. In order to give more insight into the performance of MERSS with respect to (w.r.t.) simple random sampling (SRS), the asymptotic efficiency of the MLE using MERSS w.r.t. that using SRS is computed for some usual scale distributions. The relative results show that the MLE using MERSS can be real competitors to the MLE using SRS, when the same sample size is used.

Suggested Citation

  • Chen, Wangxue & Xie, Minyu & Wu, Ming, 2013. "Parametric estimation for the scale parameter for scale distributions using moving extremes ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2060-2066.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:9:p:2060-2066
    DOI: 10.1016/j.spl.2013.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213001764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Al-Saleh & Said Al-Hadhrami, 2003. "Estimation of the mean of the exponential distribution using moving extremes ranked set sampling," Statistical Papers, Springer, vol. 44(3), pages 367-382, July.
    2. Kin Lam & Bimal Sinha & Zhong Wu, 1994. "Estimation of parameters in a two-parameter exponential distribution using ranked set sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 723-736, December.
    3. Lynne Stokes, 1995. "Parametric ranked set sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 465-482, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amer Ibrahim Al-Omari & SidAhmed Benchiha & Ibrahim M. Almanjahie, 2022. "Efficient Estimation of Two-Parameter Xgamma Distribution Parameters Using Ranked Set Sampling Design," Mathematics, MDPI, vol. 10(17), pages 1-18, September.
    2. Wangxue Chen & Rui Yang & Dongsen Yao & Chunxian Long, 2021. "Pareto parameters estimation using moving extremes ranked set sampling," Statistical Papers, Springer, vol. 62(3), pages 1195-1211, June.
    3. Wenshu Qian & Wangxue Chen & Xiaofang He, 2021. "Parameter estimation for the Pareto distribution based on ranked set sampling," Statistical Papers, Springer, vol. 62(1), pages 395-417, February.
    4. Alexey Kudryavtsev & Oleg Shestakov, 2023. "Estimates of the Convergence Rate in the Generalized Rényi Theorem with a Structural Digamma Distribution Using Zeta Metrics," Mathematics, MDPI, vol. 11(21), pages 1-10, October.
    5. Hamid Rahmani & Mostafa Razmkhah, 2017. "Perfect ranking test in moving extreme ranked set sampling," Statistical Papers, Springer, vol. 58(3), pages 855-875, September.
    6. Xiaofang He & Wangxue Chen & Wenshu Qian, 2020. "Maximum likelihood estimators of the parameters of the log-logistic distribution," Statistical Papers, Springer, vol. 61(5), pages 1875-1892, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barabesi, Lucio & El-Sharaawi, Abdel, 2001. "The efficiency of ranked set sampling for parameter estimation," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 189-199, June.
    2. Dinesh S. Bhoj, 2001. "Ranked Set Sampling with Unequal Samples," Biometrics, The International Biometric Society, vol. 57(3), pages 957-962, September.
    3. Xiaofang He & Wangxue Chen & Wenshu Qian, 2020. "Maximum likelihood estimators of the parameters of the log-logistic distribution," Statistical Papers, Springer, vol. 61(5), pages 1875-1892, October.
    4. Manoj Chacko & P. Thomas, 2008. "Estimation of a parameter of Morgenstern type bivariate exponential distribution by ranked set sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 301-318, June.
    5. Xiaoyue Zhao & Zehua Chen, 2002. "On the Ranked-Set Sampling M-Estimates for Symmetric Location Families," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 626-640, September.
    6. Wenshu Qian & Wangxue Chen & Xiaofang He, 2021. "Parameter estimation for the Pareto distribution based on ranked set sampling," Statistical Papers, Springer, vol. 62(1), pages 395-417, February.
    7. Ehsan Zamanzade & M. Mahdizadeh & Hani M. Samawi, 2020. "Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 485-502, September.
    8. Manoj Chacko, 2017. "Bayesian estimation based on ranked set sample from Morgenstern type bivariate exponential distribution when ranking is imperfect," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(3), pages 333-349, April.
    9. N. Balakrishnan & M. Brito & A. Quiroz, 2013. "On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 161-177, February.
    10. Vic Barnett & Maria Cecilia Mendes Barreto, 2001. "Estimators for a Poisson parameter using ranked set sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(8), pages 929-941.
    11. Mohammad Al-Saleh & Ahmad Al-Ananbeh, 2007. "Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable," Statistical Papers, Springer, vol. 48(2), pages 179-195, April.
    12. Heba F. Nagy & Amer Ibrahim Al-Omari & Amal S. Hassan & Ghadah A. Alomani, 2022. "Improved Estimation of the Inverted Kumaraswamy Distribution Parameters Based on Ranked Set Sampling with an Application to Real Data," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    13. Jesse Frey & Timothy G. Feeman, 2017. "Efficiency comparisons for partially rank-ordered set sampling," Statistical Papers, Springer, vol. 58(4), pages 1149-1163, December.
    14. Raqab, Mohammad Z. & Kouider, Elies & Al-Shboul, Qasim M., 2002. "Best linear invariant estimators using ranked set sampling procedure: comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 97-105, March.
    15. Frey, Jesse & Wang, Le, 2013. "Most powerful rank tests for perfect rankings," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 157-168.
    16. Walid Abu-Dayyeh & Aissa Assrhani & Kamarulzaman Ibrahim, 2013. "Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling," Statistical Papers, Springer, vol. 54(1), pages 207-225, February.
    17. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    18. Gang Zheng & Mohammad Al-Saleh, 2003. "Improving the best linear unbiased estimator for the scale parameter of symmetric distributions by using the absolute value of ranked set samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(3), pages 253-265.
    19. Oualid Saci & Megdouda Ourbih-Tari & Leila Baiche, 2023. "Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 540-571, February.
    20. Kotb Mohammed S., 2016. "Bayesian Prediction Bounds for the Exponential-Type Distribution Based on Ordered Ranked Set Sampling," Stochastics and Quality Control, De Gruyter, vol. 31(1), pages 45-54, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:9:p:2060-2066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.