IDEAS home Printed from
   My bibliography  Save this article

Quantile based entropy function in past lifetime


  • Sunoj, S.M.
  • Sankaran, P.G.
  • Nanda, Asok K.


Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime distributions and studied its relationship with residual entropy function. In the present paper, we introduce a quantile version of the entropy function in past lifetime and study its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi (2002) the proposed measure uniquely determines the underlying probability distribution. The measure is used to study two nonparametric classes of distributions. We prove characterizations theorems for some well known quantile lifetime distributions.

Suggested Citation

  • Sunoj, S.M. & Sankaran, P.G. & Nanda, Asok K., 2013. "Quantile based entropy function in past lifetime," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 366-372.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:366-372
    DOI: 10.1016/j.spl.2012.09.016

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Sunoj, S.M. & Sankaran, P.G., 2012. "Quantile based entropy function," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1049-1053.
    2. Navarro, J. & Sunoj, S.M. & Linu, M.N., 2011. "Characterizations of bivariate models using dynamic Kullback-Leibler discrimination measures," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1594-1598, November.
    3. Sankaran, P.G. & Unnikrishnan Nair, N. & Sreedevi, E.P., 2010. "A quantile based test for comparing cumulative incidence functions of competing risks models," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 886-891, May.
    4. Bartoszewicz, Jaroslaw, 2009. "On a representation of weighted distributions," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1690-1694, August.
    5. repec:taf:gnstxx:v:21:y:2009:i:6:p:757-767 is not listed on IDEAS
    6. Asok Nanda & Prasanta Paul, 2006. "Some Properties of Past Entropy and their Applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(1), pages 47-61, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sankaran, P.G. & Sunoj, S.M. & Nair, N. Unnikrishnan, 2016. "Kullback–Leibler divergence: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 72-79.
    2. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:366-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.