IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i12p2189-2197.html
   My bibliography  Save this article

Bounds for probabilities of unions of events and the Borel–Cantelli lemma

Author

Listed:
  • Frolov, Andrei N.

Abstract

We discuss a method which yields new bounds for probabilities of unions of events. These bounds are stronger than the Chung–Erdős inequality and its generalizations. We derive new generalizations of the second part of the Borel–Cantelli lemma. Earlier generalizations are special cases.

Suggested Citation

  • Frolov, Andrei N., 2012. "Bounds for probabilities of unions of events and the Borel–Cantelli lemma," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2189-2197.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2189-2197
    DOI: 10.1016/j.spl.2012.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrov, Valentin V., 2002. "A note on the Borel-Cantelli lemma," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 283-286, July.
    2. Endre Boros & András Prékopa, 1989. "Closed Form Two-Sided Bounds for Probabilities that At Least r and Exactly r Out of n Events Occur," Mathematics of Operations Research, INFORMS, vol. 14(2), pages 317-342, May.
    3. Petrov, Valentin V., 2004. "A generalization of the Borel-Cantelli Lemma," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 233-239, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jun & Alajaji, Fady & Takahara, Glen, 2016. "On bounding the union probability using partial weighted information," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 38-44.
    2. Frolov, Andrei N., 2021. "On upper and lower bounds for probabilities of combinations of events," Statistics & Probability Letters, Elsevier, vol. 173(C).
    3. Stepanov, Alexei, 2014. "On the use of the Borel–Cantelli lemma in Markov chains," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 149-154.
    4. Frolov, Andrei N., 2017. "On inequalities for values of first jumps of distribution functions and Hölder’s inequality," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 150-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stepanov, Alexei, 2014. "On the use of the Borel–Cantelli lemma in Markov chains," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 149-154.
    2. Chunyu Kao & Gaofeng Zong, 2025. "Borel–Cantelli Lemma for Capacities," Mathematics, MDPI, vol. 13(5), pages 1-10, February.
    3. Chandra, Tapas Kumar, 2008. "The Borel-Cantelli lemma under dependence conditions," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 390-395, March.
    4. Xie, Yuquan, 2008. "A bilateral inequality on the Borel-Cantelli Lemma," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2052-2057, October.
    5. Petrov, Valentin V., 2004. "A generalization of the Borel-Cantelli Lemma," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 233-239, April.
    6. Y-C Hsieh, 2003. "New reliability bounds for coherent systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(9), pages 995-1001, September.
    7. József Bukszár & András Prékopa, 2001. "Probability Bounds with Cherry Trees," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 174-192, February.
    8. Talal Alharbi & Anh Ninh & Ersoy Subasi & Munevver Mine Subasi, 2022. "The value of shape constraints in discrete moment problems: a review and extension," Annals of Operations Research, Springer, vol. 318(1), pages 1-31, November.
    9. Endre Boros & Andrea Scozzari & Fabio Tardella & Pierangela Veneziani, 2014. "Polynomially Computable Bounds for the Probability of the Union of Events," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1311-1329, November.
    10. Andras Prekopa & Tam�s Sz�ntai, 2010. "On the analytical-numerical valuation of the Bermudan and American options," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 59-74.
    11. Frolov, Andrei N., 2021. "On upper and lower bounds for probabilities of combinations of events," Statistics & Probability Letters, Elsevier, vol. 173(C).
    12. Hu, Shuhe & Wang, Xuejun & Li, Xiaoqin & Zhang, Yuanyuan, 2009. "Comments on the paper: A bilateral inequality on the Borel-Cantelli Lemma," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 889-893, April.
    13. Garud Iyengar & Alfred Ka Chun Ma, 2010. "A robust optimization approach to pension fund management," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 163-177, June.
    14. András Prékopa & Anh Ninh & Gabriela Alexe, 2016. "On the relationship between the discrete and continuous bounding moment problems and their numerical solutions," Annals of Operations Research, Springer, vol. 238(1), pages 521-575, March.
    15. B. Prakasa Rao, 2009. "Conditional independence, conditional mixing and conditional association," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 441-460, June.
    16. József Bukszár & Gergely Mádi-Nagy & Tamás Szántai, 2012. "Computing bounds for the probability of the union of events by different methods," Annals of Operations Research, Springer, vol. 201(1), pages 63-81, December.
    17. Frolov, Andrei N., 2017. "On inequalities for values of first jumps of distribution functions and Hölder’s inequality," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 150-156.
    18. András Prékopa & Anh Ninh & Gabriela Alexe, 2016. "On the relationship between the discrete and continuous bounding moment problems and their numerical solutions," Annals of Operations Research, Springer, vol. 238(1), pages 521-575, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2189-2197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.