IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

One-dimensional BSDEs with left-continuous, lower semi-continuous and linear-growth generators

  • Fan, ShengJun
  • Jiang, Long
Registered author(s):

    This paper deals with a one-dimensional backward stochastic differential equation (BSDE) whose generator g is of linear growth in (y,z), left-continuous and lower semi-continuous (maybe discontinuous) in y, and continuous in z. We establish, in this setting, the existence of the minimal solution to the BSDE. And we also prove a comparison theorem and a Levi type theorem for the minimal solutions. They generalize some known results.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 10 ()
    Pages: 1792-1798

    in new window

    Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1792-1798
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Liu, Jicheng & Ren, Jiagang, 2002. "Comparison theorem for solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 93-100, January.
    2. Lepeltier, J. P. & San Martin, J., 1997. "Backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 32(4), pages 425-430, April.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    4. Jia, Guangyan, 2008. "A class of backward stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 231-237, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1792-1798. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.