IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i10p1792-1798.html
   My bibliography  Save this article

One-dimensional BSDEs with left-continuous, lower semi-continuous and linear-growth generators

Author

Listed:
  • Fan, ShengJun
  • Jiang, Long

Abstract

This paper deals with a one-dimensional backward stochastic differential equation (BSDE) whose generator g is of linear growth in (y,z), left-continuous and lower semi-continuous (maybe discontinuous) in y, and continuous in z. We establish, in this setting, the existence of the minimal solution to the BSDE. And we also prove a comparison theorem and a Levi type theorem for the minimal solutions. They generalize some known results.

Suggested Citation

  • Fan, ShengJun & Jiang, Long, 2012. "One-dimensional BSDEs with left-continuous, lower semi-continuous and linear-growth generators," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1792-1798.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1792-1798
    DOI: 10.1016/j.spl.2012.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002155
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Guangyan, 2008. "A class of backward stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 231-237, February.
    2. Lepeltier, J. P. & San Martin, J., 1997. "Backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 32(4), pages 425-430, April.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    4. Liu, Jicheng & Ren, Jiagang, 2002. "Comparison theorem for solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 93-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1792-1798. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.