IDEAS home Printed from
   My bibliography  Save this article

Non-parametric estimation of conditional quantiles


  • Samanta, M.


Let (X, Y) be a two dimensional random variable with a joint density function f(x, y) and a joint distribution function F(x, y) = [small esh]x-[infinity][small esh]y-[infinity]f(u, v) dv du. Following Nadaraya (1964) and Rosenblatt (1969) a class of nonparametric estimators of conditional quantiles of Y for a given value of X, based on a random sample from the above distribution, is proposed. It is shown that under some regularity conditions the estimators are strongly consistent and asymptotically normally distributed.

Suggested Citation

  • Samanta, M., 1989. "Non-parametric estimation of conditional quantiles," Statistics & Probability Letters, Elsevier, vol. 7(5), pages 407-412, April.
  • Handle: RePEc:eee:stapro:v:7:y:1989:i:5:p:407-412

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ould-SaI¨d, Elias, 2006. "A strong uniform convergence rate of kernel conditional quantile estimator under random censorship," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 579-586, March.
    2. De Gooijer, Jan G. & Gannoun, Ali & Zerom, Dawit, 2002. "Mean squared error properties of the kernel-based multi-stage median predictor for time series," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 51-56, January.
    3. Fernandes, Marcelo & Guerre, Emmanuel & Horta, Eduardo, 2017. "Smoothing quantile regressions," Textos para discussão 457, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    4. Zongwu Cai & Xian Wang, 2013. "Nonparametric Methods for Estimating Conditional VaR and Expected Shortfall," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    5. Laksaci, Ali & Lemdani, Mohamed & Ould-Sad, Elias, 2009. "A generalized L1-approach for a kernel estimator of conditional quantile with functional regressors: Consistency and asymptotic normality," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1065-1073, April.
    6. Gannoun, Ali & Girard, Stephane & Guinot, Christiane & Saracco, Jerome, 2004. "Sliced inverse regression in reference curves estimation," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 103-122, May.
    7. Gardes, Laurent & Girard, Stéphane, 2016. "On the estimation of the functional Weibull tail-coefficient," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 29-45.
    8. Ioannides, D. A., 2004. "Fixed design regression quantiles for time series," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 235-245, July.
    9. Abberger, Klaus, 1994. "Nichtparametrische Schätzung bedingter Quantile in Finanzmarktdaten," Discussion Papers, Series II 225, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    10. Lee, Tae-Hwy & Saltoglu, Burak, 2002. "Assessing the risk forecasts for Japanese stock market," Japan and the World Economy, Elsevier, vol. 14(1), pages 63-85, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:7:y:1989:i:5:p:407-412. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.