IDEAS home Printed from
   My bibliography  Save this article

Fragment size distributions in random fragmentations with cutoff


  • Ghorbel, M.
  • Huillet, T.


We consider the following fragmentation model with cutoff: a fragment with initial size x0>1 splits into b>1 daughter fragments with random sizes, the partition law of which has exchangeable distribution. In subsequent steps, fragmentation proceeds independently for each sub-fragments whose sizes are bigger than some cutoff value xc=1 only. This process naturally terminates with probability 1. The size of a fragment is the random mass attached to a leaf of a "typical" path of the full (finite) fragmentation tree. The height's law of typical paths is first analyzed, using analytic and renewal processes techniques. We then compute fragments' size limiting distribution (x0[short up arrow][infinity]), for various senses of a typical path. Next, we exhibit some of its statistical features, essentially in the case of the exchangeable Dirichlet partition model.

Suggested Citation

  • Ghorbel, M. & Huillet, T., 2005. "Fragment size distributions in random fragmentations with cutoff," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 47-60, January.
  • Handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:47-60

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hosam Mahmoud, 2003. "One-sided variations on binary search trees," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 885-900, December.
    2. Bertoin, J. & van Harn, K. & Steutel, F. W., 1999. "Renewal theory and level passage by subordinators," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 65-69, October.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:47-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.