IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Fragment size distributions in random fragmentations with cutoff

Listed author(s):
  • Ghorbel, M.
  • Huillet, T.
Registered author(s):

    We consider the following fragmentation model with cutoff: a fragment with initial size x0>1 splits into b>1 daughter fragments with random sizes, the partition law of which has exchangeable distribution. In subsequent steps, fragmentation proceeds independently for each sub-fragments whose sizes are bigger than some cutoff value xc=1 only. This process naturally terminates with probability 1. The size of a fragment is the random mass attached to a leaf of a "typical" path of the full (finite) fragmentation tree. The height's law of typical paths is first analyzed, using analytic and renewal processes techniques. We then compute fragments' size limiting distribution (x0[short up arrow][infinity]), for various senses of a typical path. Next, we exhibit some of its statistical features, essentially in the case of the exchangeable Dirichlet partition model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 71 (2005)
    Issue (Month): 1 (January)
    Pages: 47-60

    in new window

    Handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:47-60
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Hosam Mahmoud, 2003. "One-sided variations on binary search trees," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 885-900, December.
    2. Bertoin, J. & van Harn, K. & Steutel, F. W., 1999. "Renewal theory and level passage by subordinators," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 65-69, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:47-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.