IDEAS home Printed from
   My bibliography  Save this article

Definition and probabilistic properties of skew-distributions


  • Arellano-Valle, R. B.
  • del Pino, G.
  • San Martín, E.


The univariate and multivariate skew-normal distributions have a number of intriguing properties. It is shown here that these hold for a general class of distributions, defined in terms of independence conditions on signs and absolute values. For this class, two stochastic representations become equivalent, one using conditioning on the positivity of a random vector and the other employing a vector of absolute values. General methods for computing moments and for obtaining the density function of a general skew-distribution are given. The case of spherical and elliptical distributions is briefly discussed.

Suggested Citation

  • Arellano-Valle, R. B. & del Pino, G. & San Martín, E., 2002. "Definition and probabilistic properties of skew-distributions," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 111-121, June.
  • Handle: RePEc:eee:stapro:v:58:y:2002:i:2:p:111-121

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    2. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    3. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    4. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    5. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    2. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    3. Arellano-Valle, R.B. & Ozan, S. & Bolfarine, H. & Lachos, V.H., 2005. "Skew normal measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 265-281, October.
    4. Henze, Norbert & Nikitin, Yakov & Ebner, Bruno, 2009. "Integral distribution-free statistics of Lp-type and their asymptotic comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3426-3438, July.
    5. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    6. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    7. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    8. Reinaldo Arellano-Valle & Luis Castro & Graciela González-Farías & Karla Muñoz-Gajardo, 2012. "Student-t censored regression model: properties and inference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 453-473, November.
    9. Ogundimu, Emmanuel O. & Hutton, Jane L., 2015. "On the extended two-parameter generalized skew-normal distribution," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 142-148.
    10. Dutta, Subhajit & Genton, Marc G., 2014. "A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 82-93.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:58:y:2002:i:2:p:111-121. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.