IDEAS home Printed from
   My bibliography  Save this article

A dependent bivariate t distribution with marginals on different degrees of freedom


  • Jones, M. C.


Let Z1,Z2 and W1,W2 be mutually independent random variables, each Zi following the standard normal distribution and Wi following the chi-squared distribution on ni degrees of freedom. Then, the pair of random variables , has the bivariate spherically symmetric t distribution; this has both marginals the same, namely Student's t distributions on n1 degrees of freedom. In this paper, we study the joint distribution of {, ,} where [nu]1=n1, [nu]2=n1+n2. This bivariate distribution has marginal distributions which are Student t distributions on different degrees of freedom if [nu]1[not equal to][nu]2. The marginals remain uncorrelated, as in the spherically symmetric case, but are also by no means independent.

Suggested Citation

  • Jones, M. C., 2002. "A dependent bivariate t distribution with marginals on different degrees of freedom," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 163-170, January.
  • Handle: RePEc:eee:stapro:v:56:y:2002:i:2:p:163-170

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shaw, W.T. & Lee, K.T.A., 2008. "Bivariate Student t distributions with variable marginal degrees of freedom and independence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1276-1287, July.
    2. Ebrahimi, Nader & Hamedani, G.G. & Soofi, Ehsan S. & Volkmer, Hans, 2010. "A class of models for uncorrelated random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1859-1871, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:56:y:2002:i:2:p:163-170. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.