IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On conditional compactly uniform pth-order integrability of random elements in Banach spaces

Listed author(s):
  • Cabrera, Manuel Ordóñez
  • Volodin, Andrei I.
Registered author(s):

    The notion of conditional compactly uniform pth-order integrability of an array of random elements in a separable Banach space concerning an array of random variables and relative to a sequence of [sigma]-algebras is introduced and characterized. We state a conditional law for randomly weighted sums of random elements in a Banach space with the bounded approximation property, and we prove that, under the introduced condition, the problem can be reduced to a similar problem for random elements in a finite-dimensional space.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 55 (2001)
    Issue (Month): 3 (December)
    Pages: 301-309

    in new window

    Handle: RePEc:eee:stapro:v:55:y:2001:i:3:p:301-309
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Hu, Tien-Chung & Cabrera, Manuel Ordóñez & Volodin, Andrei I., 2001. "Convergence of randomly weighted sums of Banach space valued random elements and uniform integrability concerning the random weights," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 155-164, January.
    2. Gut, Allan, 1992. "The weak law of large numbers for arrays," Statistics & Probability Letters, Elsevier, vol. 14(1), pages 49-52, May.
    3. Cuesta, Juan A. & Matrán, Carlos, 1988. "Strong convergence of weighted sums of random elements through the equivalence of sequences of distributions," Journal of Multivariate Analysis, Elsevier, vol. 25(2), pages 311-322, May.
    4. Rosalsky, Andrew & Sreehari, M., 1998. "On the limiting behavior of randomly weighted partial sums," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 403-410, November.
    5. Sung, Soo Hak, 1999. "Weak law of large numbers for arrays of random variables," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 293-298, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:55:y:2001:i:3:p:301-309. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.