IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v31y1996i1p1-6.html
   My bibliography  Save this article

A note on maxima of bivariate random vectors

Author

Listed:
  • Hooghiemstra, G.
  • Hüsler, J.

Abstract

For i.i.d. bivariate normal vectors we consider the maxima of the projections with respect to two arbitrary directions. A limit theorem for these maxima is proved for the case that the angle of the two directions approaches zero. The result is generalized to a functional limit theorem.

Suggested Citation

  • Hooghiemstra, G. & Hüsler, J., 1996. "A note on maxima of bivariate random vectors," Statistics & Probability Letters, Elsevier, vol. 31(1), pages 1-6, December.
  • Handle: RePEc:eee:stapro:v:31:y:1996:i:1:p:1-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00005-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabluchko, Zakhar, 2009. "Extremes of space-time Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3962-3980, November.
    2. Tang, Linjun & Zheng, Shengchao & Tan, Zhongquan, 2021. "Limit theorem on the pointwise maxima of minimum of vector-valued Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 176(C).
    3. Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    2. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    3. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    4. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2011.
    5. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    6. Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
    7. Dominique Guegan & Bertrand Hassani, 2012. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Post-Print halshs-00587706, HAL.
    8. Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    12. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    13. Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. repec:jss:jstsof:21:i04 is not listed on IDEAS
    15. Hashorva, Enkelejd, 2005. "Elliptical triangular arrays in the max-domain of attraction of Hüsler-Reiss distribution," Statistics & Probability Letters, Elsevier, vol. 72(2), pages 125-135, April.
    16. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    17. Kabluchko, Zakhar, 2009. "Extremes of space-time Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3962-3980, November.
    18. Tang, Linjun & Zheng, Shengchao & Tan, Zhongquan, 2021. "Limit theorem on the pointwise maxima of minimum of vector-valued Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 176(C).
    19. Papastathopoulos, Ioannis & Strokorb, Kirstin, 2016. "Conditional independence among max-stable laws," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 9-15.
    20. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    21. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:31:y:1996:i:1:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.