IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v224y2025ics0167715225001002.html
   My bibliography  Save this article

3 × 3 optimal ranked set sampling design with k cycles and best linear invariant estimators of the parameters for normal distribution

Author

Listed:
  • Li, Minmin
  • Chen, Wangxue

Abstract

In statistical parameter estimation problems, how well the parameters are estimated largely depends on the sampling design used. Cost effective sampling will be an important research problem. In this article, we find a 3 × 3 optimal ranked set sampling (RSS) design with k cycles for the normal distribution N(μ,σ2) in which the location parameter μ and the scale parameter σ are both unknown based on the D–optimal criterion in the experimental design. Then, the best linear invariant estimates (BLIEs) of μ and σ from N(μ,σ2) and their properties are studied under this RSS design. The efficiency is compared by the determinant of the mean square error matrix. The theoretical results and numerical results show that the BLIEs under the optimal RSS are more effective than the BLIEs under the balanced RSS.

Suggested Citation

  • Li, Minmin & Chen, Wangxue, 2025. "3 × 3 optimal ranked set sampling design with k cycles and best linear invariant estimators of the parameters for normal distribution," Statistics & Probability Letters, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:stapro:v:224:y:2025:i:c:s0167715225001002
    DOI: 10.1016/j.spl.2025.110455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715225001002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2025.110455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:224:y:2025:i:c:s0167715225001002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.