IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v185y2022ics016771522200044x.html
   My bibliography  Save this article

Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure

Author

Listed:
  • Yuan, Meng
  • Lu, Dawei

Abstract

Consider a renewal risk model in which the current inter-arrival time depends on a fixed number of previous claims but is independent of all other claims. We are interested in the precise large deviations of the aggregate amount of claims for the case of sub-exponential claims. In addition, an asymptotic estimate for the expectation of the aggregate amount of claims is also obtained. The asymptotic formulas are fully consistent with existing works in this study.

Suggested Citation

  • Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:stapro:v:185:y:2022:i:c:s016771522200044x
    DOI: 10.1016/j.spl.2022.109440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522200044X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asimit, Alexandru V. & Li, Jinzhu, 2018. "Systemic Risk: An Asymptotic Evaluation," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 673-698, May.
    2. Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
    3. Chen, Yiqing & White, Toby & Yuen, Kam Chuen, 2021. "Precise large deviations of aggregate claims with arbitrary dependence between claim sizes and waiting times," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 1-6.
    4. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
    5. Li, Rong & Bi, Xiuchun & Zhang, Shuguang, 2020. "Large deviations for sums of claims in a general renewal risk model with the regression dependent structure," Statistics & Probability Letters, Elsevier, vol. 165(C).
    6. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    7. Baltrunas, Aleksandras & Leipus, Remigijus & Siaulys, Jonas, 2008. "Precise large deviation results for the total claim amount under subexponential claim sizes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1206-1214, August.
    8. Baltrunas, A. & Daley, D. J. & Klüppelberg, C., 2004. "Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 237-258, June.
    9. Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
    10. Tang, Qihe & Su, Chun & Jiang, Tao & Zhang, Jinsong, 2001. "Large deviations for heavy-tailed random sums in compound renewal model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 91-100, March.
    11. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
    2. Chen, Yiqing & White, Toby & Yuen, Kam Chuen, 2021. "Precise large deviations of aggregate claims with arbitrary dependence between claim sizes and waiting times," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 1-6.
    3. Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    4. Fu, Ke-Ang & Liu, Yang & Wang, Jiangfeng, 2022. "Precise large deviations in a bidimensional risk model with arbitrary dependence between claim-size vectors and waiting times," Statistics & Probability Letters, Elsevier, vol. 184(C).
    5. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
    6. Yang Yang & Xinzhi Wang & Shaoying Chen, 2022. "Second Order Asymptotics for Infinite-Time Ruin Probability in a Compound Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1221-1236, June.
    7. Yiqing Chen & Kam C. Yuen & Kai W. Ng, 2011. "Precise Large Deviations of Random Sums in Presence of Negative Dependence and Consistent Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 821-833, December.
    8. Lu, Dawei, 2011. "Lower and upper bounds of large deviation for sums of subexponential claims in a multi-risk model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1911-1919.
    9. Li, Rong & Bi, Xiuchun & Zhang, Shuguang, 2020. "Large deviations for sums of claims in a general renewal risk model with the regression dependent structure," Statistics & Probability Letters, Elsevier, vol. 165(C).
    10. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    11. Lu, Dawei & Zhang, Bin, 2016. "Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 20-29.
    12. Leipus, Remigijus & Siaulys, Jonas, 2007. "Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 498-508, May.
    13. Bernackaitė, Emilija & Šiaulys, Jonas, 2015. "The exponential moment tail of inhomogeneous renewal process," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 9-15.
    14. Baltrunas, Aleksandras & Leipus, Remigijus & Siaulys, Jonas, 2008. "Precise large deviation results for the total claim amount under subexponential claim sizes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1206-1214, August.
    15. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    16. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    17. Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
    18. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.
    19. Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
    20. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:185:y:2022:i:c:s016771522200044x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.