IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v177y2021ics0167715221001097.html
   My bibliography  Save this article

On monotonicity of Ramanujan function for binomial random variables

Author

Listed:
  • Dmitriev, Daniil
  • Zhukovskii, Maksim

Abstract

For a binomial random variable ξ with parameters n and b∕n, it is well known that the median equals b when b is an integer. In 1968, Jogdeo and Samuels studied the behaviour of the relative difference between P(ξ=b) and 1∕2−P(ξ

Suggested Citation

  • Dmitriev, Daniil & Zhukovskii, Maksim, 2021. "On monotonicity of Ramanujan function for binomial random variables," Statistics & Probability Letters, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:stapro:v:177:y:2021:i:c:s0167715221001097
    DOI: 10.1016/j.spl.2021.109147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simai He & Jiawei Zhang & Shuzhong Zhang, 2010. "Bounding Probability of Small Deviation: A Fourth Moment Approach," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 208-232, February.
    2. Hamza, Kais, 1995. "The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 21-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Shao, Hui, 2017. "Decomposing aggregate risk into marginal risks under partial information: A top-down method," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 97-100.
    3. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    4. Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
    5. Haruhiko Ogasawara, 2019. "The multiple Cantelli inequalities," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 495-506, September.
    6. Adam Kasperski & Paweł Zieliński, 2009. "A randomized algorithm for the min-max selecting items problem with uncertain weights," Annals of Operations Research, Springer, vol. 172(1), pages 221-230, November.
    7. Derek Singh & Shuzhong Zhang, 2020. "Tight Bounds for a Class of Data-Driven Distributionally Robust Risk Measures," Papers 2010.05398, arXiv.org, revised Oct 2020.
    8. Frédéric Ouimet, 2023. "A refined continuity correction for the negative binomial distribution and asymptotics of the median," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 827-849, October.
    9. Simai He & Bo Jiang & Zhening Li & Shuzhong Zhang, 2014. "Probability Bounds for Polynomial Functions in Random Variables," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 889-907, August.
    10. Wentao Hu, 2019. "calculation worst-case Value-at-Risk prediction using empirical data under model uncertainty," Papers 1908.00982, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:177:y:2021:i:c:s0167715221001097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.