Ridge reconstruction of partially observed functional data is asymptotically optimal
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2020.108813
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
- Bugni, Federico A., 2012.
"Specification Test For Missing Functional Data,"
Econometric Theory, Cambridge University Press, vol. 28(5), pages 959-1002, October.
- Federico A Bugni, 2010. "Specification Test for Missing Functional Data," Working Papers 10-41, Duke University, Department of Economics.
- Matthew Dawson & Hans-Georg Müller, 2018. "Dynamic Modeling of Conditional Quantile Trajectories, With Application to Longitudinal Snippet Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1612-1624, October.
- Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
- Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
- Liebl, Dominik & Rameseder, Stefan, 2019. "Partially observed functional data: The case of systematically missing parts," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 104-115.
- Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
- Liebl, Dominik, 2013. "Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective," MPRA Paper 50881, University Library of Munich, Germany.
- David Kraus, 2015. "Components and completion of partially observed functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 777-801, September.
- M-H Descary & V M Panaretos, 2019. "Recovering covariance from functional fragments," Biometrika, Biometrika Trust, vol. 106(1), pages 145-160.
- Aurore Delaigle & Peter Hall, 2013. "Classification Using Censored Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1269-1283, December.
- A. Delaigle & P. Hall, 2016. "Approximating fragmented functional data by segments of Markov chains," Biometrika, Biometrika Trust, vol. 103(4), pages 779-799.
- David Kraus & Marco Stefanucci, 2019. "Classification of functional fragments by regularized linear classifiers with domain selection," Biometrika, Biometrika Trust, vol. 106(1), pages 161-180.
- Shin, Hyejin & Hsing, Tailen, 2012. "Linear prediction in functional data analysis," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3680-3700.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
- Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
- Liebl, Dominik & Rameseder, Stefan, 2019. "Partially observed functional data: The case of systematically missing parts," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 104-115.
- Anna Maria Paganoni & Laura M. Sangalli, 2025. "Comments on: exploratory functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(2), pages 498-501, June.
- Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
- Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
- Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
- A. Delaigle & P. Hall, 2016. "Approximating fragmented functional data by segments of Markov chains," Biometrika, Biometrika Trust, vol. 103(4), pages 779-799.
- Yao, Binhong & Li, Peixing, 2023. "Covariance estimation error of incomplete functional data under RKHS framework," Applied Mathematics and Computation, Elsevier, vol. 443(C).
- Sylvain Robbiano & Matthieu Saumard & Michel Curé, 2016. "Improving prediction performance of stellar parameters using functional models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1465-1476, June.
- Elías Fernández, Antonio & Jiménez Recaredo, Raúl José & Paganoni, Anna M. & Paganoni, Anna Maria, 2019. "A Depth for Censured Functional Data," DES - Working Papers. Statistics and Econometrics. WS 28579, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
- Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
- Ghosal, Rahul & Matabuena, Marcos & Ghosh, Sujit K., 2025. "Functional time transformation model with applications to digital health," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
- Jiménez Recaredo, Raúl José & Elías Fernández, Antonio, 2017. "Prediction Bands for Functional Data Based on Depth Measures," DES - Working Papers. Statistics and Econometrics. WS 24606, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
- Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
- Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
- Shuoyang Wang & Guanqun Cao & Zuofeng Shang & for the Alzheimer's Disease Neuroimaging Initiative, 2023. "Deep neural network classifier for multidimensional functional data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1667-1686, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics0167715220301164.html