IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics0167715220301164.html
   My bibliography  Save this article

Ridge reconstruction of partially observed functional data is asymptotically optimal

Author

Listed:
  • Kraus, David
  • Stefanucci, Marco

Abstract

When functional data are observed on parts of the domain, it is of interest to recover the missing parts of curves. Kraus (2015) proposed a linear reconstruction method based on ridge regularization. Kneip and Liebl (2019) argue that an assumption under which Kraus (2015) established the consistency of the ridge method is too restrictive and propose a principal component reconstruction method that they prove to be asymptotically optimal. In this note we relax the restrictive assumption that the true best linear reconstruction operator is Hilbert–Schmidt and prove that the ridge method achieves asymptotic optimality under essentially no assumptions. The result is illustrated in a simulation study.

Suggested Citation

  • Kraus, David & Stefanucci, Marco, 2020. "Ridge reconstruction of partially observed functional data is asymptotically optimal," Statistics & Probability Letters, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301164
    DOI: 10.1016/j.spl.2020.108813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bugni, Federico A., 2012. "Specification Test For Missing Functional Data," Econometric Theory, Cambridge University Press, vol. 28(5), pages 959-1002, October.
    2. Liebl, Dominik & Rameseder, Stefan, 2019. "Partially observed functional data: The case of systematically missing parts," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 104-115.
    3. Liebl, Dominik, 2013. "Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective," MPRA Paper 50881, University Library of Munich, Germany.
    4. M-H Descary & V M Panaretos, 2019. "Recovering covariance from functional fragments," Biometrika, Biometrika Trust, vol. 106(1), pages 145-160.
    5. Aurore Delaigle & Peter Hall, 2013. "Classification Using Censored Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1269-1283, December.
    6. A. Delaigle & P. Hall, 2016. "Approximating fragmented functional data by segments of Markov chains," Biometrika, Biometrika Trust, vol. 103(4), pages 779-799.
    7. David Kraus & Marco Stefanucci, 2019. "Classification of functional fragments by regularized linear classifiers with domain selection," Biometrika, Biometrika Trust, vol. 106(1), pages 161-180.
    8. Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
    9. Matthew Dawson & Hans-Georg Müller, 2018. "Dynamic Modeling of Conditional Quantile Trajectories, With Application to Longitudinal Snippet Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1612-1624, October.
    10. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    11. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    12. Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
    13. David Kraus, 2015. "Components and completion of partially observed functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 777-801, September.
    14. Shin, Hyejin & Hsing, Tailen, 2012. "Linear prediction in functional data analysis," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3680-3700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    2. Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
    3. Liebl, Dominik & Rameseder, Stefan, 2019. "Partially observed functional data: The case of systematically missing parts," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 104-115.
    4. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    5. Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
    6. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    7. A. Delaigle & P. Hall, 2016. "Approximating fragmented functional data by segments of Markov chains," Biometrika, Biometrika Trust, vol. 103(4), pages 779-799.
    8. Yao, Binhong & Li, Peixing, 2023. "Covariance estimation error of incomplete functional data under RKHS framework," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    9. Sylvain Robbiano & Matthieu Saumard & Michel Curé, 2016. "Improving prediction performance of stellar parameters using functional models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1465-1476, June.
    10. Elías Fernández, Antonio & Jiménez Recaredo, Raúl José & Paganoni, Anna M. & Sangalli, Laura M., 2019. "A Depth for Censured Functional Data," DES - Working Papers. Statistics and Econometrics. WS 28579, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
    12. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    13. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    14. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    15. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    16. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    17. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    18. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    19. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Technology.
    20. Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.