IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1612-1624.html
   My bibliography  Save this article

Dynamic Modeling of Conditional Quantile Trajectories, With Application to Longitudinal Snippet Data

Author

Listed:
  • Matthew Dawson
  • Hans-Georg Müller

Abstract

Longitudinal data are often plagued with sparsity of time points where measurements are available. The functional data analysis perspective has been shown to provide an effective and flexible approach to address this problem for the case where measurements are sparse but their times are randomly distributed over an interval. Here, we focus on a different scenario where available data can be characterized as snippets, which are very short stretches of longitudinal measurements. For each subject, the stretch of available data is much shorter than the time frame of interest, a common occurrence in accelerated longitudinal studies. An added challenge is introduced if a time proxy that is basic for usual longitudinal modeling is not available. This situation arises in the case of Alzheimer’s disease and comparable scenarios, where one is interested in time dynamics of declining performance, but the time of disease onset is unknown and chronological age does not provide a meaningful time reference for longitudinal modeling. Our main methodological contribution to address these challenges is to introduce conditional quantile trajectories for monotonic processes that emerge as solutions of a dynamic system. Our proposed estimates for these trajectories are shown to be uniformly consistent. Conditional quantile trajectories are useful descriptors of processes that quantify deterioration over time, such as hippocampal volumes in Alzheimer’s patients. We demonstrate how the proposed approach can be applied to longitudinal snippets data sampled from such processes. Supplementary materials for this article are available online.

Suggested Citation

  • Matthew Dawson & Hans-Georg Müller, 2018. "Dynamic Modeling of Conditional Quantile Trajectories, With Application to Longitudinal Snippet Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1612-1624, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1612-1624
    DOI: 10.1080/01621459.2017.1356321
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1356321
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1356321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
    2. Kraus, David & Stefanucci, Marco, 2020. "Ridge reconstruction of partially observed functional data is asymptotically optimal," Statistics & Probability Letters, Elsevier, vol. 165(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1612-1624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.