IDEAS home Printed from
   My bibliography  Save this article

Weak convergence of semimartingales and discretisation methods


  • Platen, Eckhard
  • Rebolledo, Rolando


Given a semimartingale one can construct a system ([lambda], A, B, C) where [lambda] is the distribution of the initial value and (A, B, C) is the triple of global characteristics. Thus, given a process X and a system ([lambda], A, B, C) one can look for all probability measures P such that X is a P-semimartingale with initial distribution [lambda] and global characteristics (A, B, C). We say that such a measure P is a solution to the semimartingale problem ([lambda], A, B, C). The paper is devoted to the study of a special type of semimartingale problem. We look for sufficient conditions to insure the existence of solutions and we develop a method to construct them by means of time-discretised schemes, using weak topology for probability measures.

Suggested Citation

  • Platen, Eckhard & Rebolledo, Rolando, 1985. "Weak convergence of semimartingales and discretisation methods," Stochastic Processes and their Applications, Elsevier, vol. 20(1), pages 41-58, July.
  • Handle: RePEc:eee:spapps:v:20:y:1985:i:1:p:41-58

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bruss, F. T. & Rogers, L. C. G., 1991. "Pascal processes and their characterization," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 331-338, April.
    2. Steutel, F. W., 1973. "Some recent results in infinite divisibility," Stochastic Processes and their Applications, Elsevier, vol. 1(2), pages 125-143, April.
    3. Arjas, Elja & Haara, Pentti & Norros, Ikka, 1992. "Filtering the histories of a partially observed marked point process," Stochastic Processes and their Applications, Elsevier, vol. 40(2), pages 225-250, March.
    4. R. Pillai, 1990. "On Mittag-Leffler functions and related distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 157-161, March.
    5. Böker, Fred & Serfozo, Richard, 1983. "Ordered thinnings of point processes and random measures," Stochastic Processes and their Applications, Elsevier, vol. 15(2), pages 113-132, July.
    6. Bunge, J. A. & Nagaraja, H. N., 1991. "The distributions of certain record statistics from a random number of observations," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 167-183, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    2. Jeremy Graveline & Irina Zviadadze & Mikhail Chernov, 2012. "Crash Risk in Currency Returns," 2012 Meeting Papers 753, Society for Economic Dynamics.
    3. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    4. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1.
    5. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    6. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:20:y:1985:i:1:p:41-58. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.