IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i9p3174-3206.html
   My bibliography  Save this article

On a class of singular stochastic control problems driven by Lévy noise

Author

Listed:
  • Goldys, Beniamin
  • Wu, Wei

Abstract

A class of singular stochastic control problems whose value functions satisfy an invariance property was studied by Lasry and Lions (2000). They have shown that, within this class, any singular control problem is equivalent to the corresponding standard stochastic control problem. The equivalence is in the sense that their value functions are equal. In this work, we clarify their idea and extend their work to allow Lévy type noise. In addition, for the purpose of application, we apply our result to an optimal trade execution problem studied by Lasry and Lions (2007).

Suggested Citation

  • Goldys, Beniamin & Wu, Wei, 2019. "On a class of singular stochastic control problems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3174-3206.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3174-3206
    DOI: 10.1016/j.spa.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918304708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takashi Kato, 2009. "An Optimal Execution Problem with Market Impact," Papers 0907.3282, arXiv.org, revised Dec 2014.
    2. Takashi Kato, 2014. "An optimal execution problem with market impact," Finance and Stochastics, Springer, vol. 18(3), pages 695-732, July.
    3. Ishikawa, Yasushi & Kunita, Hiroshi, 2006. "Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1743-1769, December.
    4. Giulia Di Nunno & Thilo Meyer-Brandis & Bernt Øksendal & Frank Proske, 2006. "Optimal portfolio for an insider in a market driven by Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 83-94.
    5. Takashi Kato, 2011. "An Optimal Execution Problem with a Geometric Ornstein-Uhlenbeck Price Process," Papers 1107.1787, arXiv.org, revised Jul 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    2. Takashi Kato, 2014. "VWAP Execution as an Optimal Strategy," Papers 1408.6118, arXiv.org, revised Jan 2017.
    3. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," Papers 1502.04521, arXiv.org.
    4. Kensuke Ishitani & Takashi Kato, 2015. "Theoretical and Numerical Analysis of an Optimal Execution Problem with Uncertain Market Impact," Papers 1506.02789, arXiv.org, revised Aug 2015.
    5. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    6. Takashi Kato, 2017. "An Optimal Execution Problem with S-shaped Market Impact Functions," Papers 1706.09224, arXiv.org, revised Oct 2017.
    7. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Saerom Park & Jaewook Lee & Youngdoo Son, 2016. "Predicting Market Impact Costs Using Nonparametric Machine Learning Models," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
    9. Zimo Hao & Xuhui Peng & Xicheng Zhang, 2021. "Hörmander’s Hypoelliptic Theorem for Nonlocal Operators," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1870-1916, December.
    10. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    11. Markus Hess, 2019. "Optimal Equivalent Probability Measures under Enlarged Filtrations," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 813-839, December.
    12. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2021. "Anticipative information in a Brownian-Poisson market: the binary information," DES - Working Papers. Statistics and Econometrics. WS 33624, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Clément, Emmanuelle & Gloter, Arnaud, 2015. "Local Asymptotic Mixed Normality property for discretely observed stochastic differential equations driven by stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2316-2352.
    14. Andrey Borisov & Andrey Gorshenin, 2022. "Identification of Continuous-Discrete Hidden Markov Models with Multiplicative Observation Noise," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    15. Alexander Steinicke, 2016. "Functionals of a Lévy Process on Canonical and Generic Probability Spaces," Journal of Theoretical Probability, Springer, vol. 29(2), pages 443-458, June.
    16. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    17. Bernardo D’Auria & Jose A. Salmeron, 2024. "Anticipative information in a Brownian−Poisson market," Annals of Operations Research, Springer, vol. 336(1), pages 1289-1314, May.
    18. Markus Hess, 2018. "Pricing Temperature Derivatives Under Weather Forecasts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-34, August.
    19. Olfa Draouil & Bernt {O}ksendal, 2018. "Viable Insider Markets," Papers 1801.03720, arXiv.org.
    20. Bernardo D'Auria & Jos'e A. Salmer'on, 2021. "Anticipative information in a Brownian-Poissonmarket: the binary information," Papers 2111.01529, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3174-3206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.