IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i1p348-372.html
   My bibliography  Save this article

Asymptotic behavior of central order statistics from stationary processes

Author

Listed:
  • Dembińska, Anna

Abstract

In this paper, we show that central order statistics from strictly stationary and ergodic sequences are strongly consistent estimators of population quantiles provided that the quantiles are unique. We generalize this result to strictly stationary but not necessarily ergodic sequences. We also describe three types of possible asymptotic behavior of central order statistics in the case when the corresponding population quantile is not unique. We give applications of the presented results to linear processes with both absolutely continuous and discrete innovations.

Suggested Citation

  • Dembińska, Anna, 2014. "Asymptotic behavior of central order statistics from stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 348-372.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:348-372
    DOI: 10.1016/j.spa.2013.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Pranab Kumar, 1972. "On the Bahadur representation of sample quantiles for sequences of [phi]-mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 2(1), pages 77-95, March.
    2. Ghosh, Yashowanto N. & Mukherjee, Bhramar, 2006. "On probabilistic properties of conditional medians and quantiles," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1775-1780, October.
    3. Dutta, Kalyan & Sen, Pranab Kumar, 1971. "On the Bahadur representation of sample quantiles in some stationary multivariate autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 1(2), pages 186-198, June.
    4. Miao, Yu & Yang, Guangyu, 2008. "The law of the iterated logarithm for additive functionals of Markov chains," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 265-270, February.
    5. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominicy, Yves & Hörmann, Siegfried & Ogata, Hiroaki & Veredas, David, 2013. "On sample marginal quantiles for stationary processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 28-36.
    2. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    3. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    4. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    5. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    6. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    7. Jasiński, Krzysztof, 2016. "Asymptotic normality of numbers of observations near order statistics from stationary processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 259-263.
    8. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
    9. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    10. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    11. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    12. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.
    13. Yijun Zuo, 2015. "Bahadur representations for bootstrap quantiles," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 597-610, July.
    14. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    15. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    16. Mehmet Caner & Bruce E. Hansen, 1998. "Threshold Autoregressions with a Near Unit Root," Working Papers 9821, Department of Economics, Bilkent University.
    17. De Gooijer, Jan G. & Gannoun, Ali & Zerom, Dawit, 2002. "Mean squared error properties of the kernel-based multi-stage median predictor for time series," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 51-56, January.
    18. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    19. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    20. Barbe, P. & Doisy, M. & Garel, B., 1998. "Last passage time for the empirical mean of some mixing processes," Statistics & Probability Letters, Elsevier, vol. 40(3), pages 237-245, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:348-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.