IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i9p3518-3541.html

On asymptotics for Vaserstein coupling of Markov chains

Author

Listed:
  • Butkovsky, O.A.
  • Veretennikov, A.Yu.

Abstract

We prove that strong ergodicity of a Markov process is linked with a spectral radius of a certain “associated” semigroup operator, although, not a “natural” one. We also give sufficient conditions for weak ergodicity and provide explicit estimates of the convergence rate. To establish these results we construct a modification of the Vaserstein coupling. Some applications including mixing properties are also discussed.

Suggested Citation

  • Butkovsky, O.A. & Veretennikov, A.Yu., 2013. "On asymptotics for Vaserstein coupling of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3518-3541.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:9:p:3518-3541
    DOI: 10.1016/j.spa.2013.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913001129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yuri Kabanov & Robert Liptser, 2006. "From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift," Post-Print hal-00488295, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alain Durmus & Eric Moulines & Alexey Naumov & Sergey Samsonov, 2024. "Probability and Moment Inequalities for Additive Functionals of Geometrically Ergodic Markov Chains," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2184-2233, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    2. Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018. "Edgeworth expansion for Euler approximation of continuous diffusion processes," CREATES Research Papers 2018-28, Department of Economics and Business Economics, Aarhus University.
    3. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    4. Vetter, Mathias, 2010. "Limit theorems for bipower variation of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 22-38, January.
    5. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    6. Vladimir Vovk & Glenn Shafer, 2017. "Towards a probability-free theory of continuous martingales," Papers 1703.08715, arXiv.org.
    7. Mark Podolskij & Mathieu Rosenbaum, 2012. "Testing the local volatility assumption: a statistical approach," Annals of Finance, Springer, vol. 8(1), pages 31-48, February.
    8. Heiny, Johannes & Podolskij, Mark, 2021. "On estimation of quadratic variation for multivariate pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 234-254.
    9. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    10. repec:hum:wpaper:sfb649dp2010-038 is not listed on IDEAS
    11. Mark Podolskij & Nakahiro Yoshida, 2013. "Edgeworth expansion for functionals of continuous diffusion processes," CREATES Research Papers 2013-33, Department of Economics and Business Economics, Aarhus University.
    12. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    13. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
    14. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    15. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    16. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
    17. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    18. Hardy Hulley & Johannes Ruf, 2019. "Weak Tail Conditions for Local Martingales," Published Paper Series 2019-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    19. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    20. Isaac M. Sonin & Constantine Steinberg, 2016. "Continue, quit, restart probability model," Annals of Operations Research, Springer, vol. 241(1), pages 295-318, June.
    21. Jos'e Da Fonseca & Claude Martini, 2014. "The $\alpha$-Hypergeometric Stochastic Volatility Model," Papers 1409.5142, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:9:p:3518-3541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.