IDEAS home Printed from
   My bibliography  Save this article

Uniform concentration inequality for ergodic diffusion processes observed at discrete times


  • Galtchouk, L.
  • Pergamenshchikov, S.


In this paper a concentration inequality is proved for the deviation in the ergodic theorem for diffusion processes in the case of discrete time observations. The proof is based on geometric ergodicity of diffusion processes. We consider as an application the nonparametric pointwise estimation problem of the drift coefficient when the process is observed at discrete times.

Suggested Citation

  • Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:91-109
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. repec:taf:gnstxx:v:23:y:2011:i:2:p:255-285 is not listed on IDEAS
    2. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    3. L. Galtchouk & S. Pergamenshchikov, 2006. "Asymptotically Efficient Sequential Kernel Estimates of the Drift Coefficient in Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 1-16, May.
    4. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9149-x is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:91-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.