IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i6p2265-2291.html
   My bibliography  Save this article

On backward stochastic differential equations and strict local martingales

Author

Listed:
  • Xing, Hao

Abstract

We study a backward stochastic differential equation (BSDE) whose terminal condition is an integrable function of a local martingale and generator has bounded growth in z. When the local martingale is a strict local martingale, the BSDE admits at least two different solutions. Other than a solution whose first component is of class D, there exists another solution whose first component is not of class D and strictly dominates the class D solution. Both solutions are Lp integrable for any 0

Suggested Citation

  • Xing, Hao, 2012. "On backward stochastic differential equations and strict local martingales," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2265-2291.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2265-2291
    DOI: 10.1016/j.spa.2012.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000361
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    2. Briand, Ph. & Delyon, B. & Hu, Y. & Pardoux, E. & Stoica, L., 2003. "Lp solutions of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 109-129, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2265-2291. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.