IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v62y2016icp46-69.html
   My bibliography  Save this article

Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review

Author

Listed:
  • Büyük, Mehmet
  • Tan, Adnan
  • Tümay, Mehmet
  • Bayındır, K. Çağatay

Abstract

Switching ripple filters (SRF) is one of the significant part of grid connected voltage source converters (VSC) that have been a backbone of the most of renewable energy systems for the last decade. SRFs have two main features for the grid connected VSC systems. One of these is to maintain a coupling connection and integration between grid and VSC. The other one is to prevent the penetration of switching ripple currents to the grid by filtering them. Several SRF topologies named as L, LC, LCL and LLCL type are presented in literature. In order to maintain effective switching ripple filtering, higher order SRF topologies are developed. However, these high order SRFs have resonance problems. To overcome resonance problems of higher order SRFs, passive and active damping methods are applied to SRFs. This paper presents a comprehensive review of SRFs used in grid connected VSCs. In the scope of this paper, the characteristics and the design procedures of SRFs are investigated. Also, both passive and active damping methods applied to the higher order SRFs are classified in detail with the latest studies presented in literature.

Suggested Citation

  • Büyük, Mehmet & Tan, Adnan & Tümay, Mehmet & Bayındır, K. Çağatay, 2016. "Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 46-69.
  • Handle: RePEc:eee:rensus:v:62:y:2016:i:c:p:46-69
    DOI: 10.1016/j.rser.2016.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116300235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoffer Fjellstedt & Johan Forslund & Karin Thomas, 2023. "Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection," Energies, MDPI, vol. 16(15), pages 1-12, August.
    2. Gomes, Camilo C. & Cupertino, Allan F. & Pereira, Heverton A., 2018. "Damping techniques for grid-connected voltage source converters based on LCL filter: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 116-135.
    3. Jason David & Philip Ciufo & Sean Elphick & Duane Robinson, 2022. "Preliminary Evaluation of the Impact of Sustained Overvoltage on Low Voltage Electronics-Based Equipment," Energies, MDPI, vol. 15(4), pages 1-16, February.
    4. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    5. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    6. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    7. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    8. Soumya Ranjan Das & Prakash Kumar Ray & Arun Kumar Sahoo & Somula Ramasubbareddy & Thanikanti Sudhakar Babu & Nallapaneni Manoj Kumar & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement," Energies, MDPI, vol. 14(15), pages 1-32, July.
    9. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    10. Qiyu Li & Hongwei Zhou & Jiansong Zhang & Shengdun Zhao & Jingfeng Lu, 2020. "A Virtual Negative Resistor Based Common Mode Current Resonance Suppression Method for Three-Level Grid-Tied Inverter with Discontinuous PWM," Energies, MDPI, vol. 13(7), pages 1-16, April.
    11. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:62:y:2016:i:c:p:46-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.