IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006596.html
   My bibliography  Save this article

Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant

Author

Listed:
  • Kioka, Arata
  • Nakagawa, Masami

Abstract

Corrosion and scaling have presented serious technical challenges to make geothermal power reliable and affordable. Due to the large quantities of geothermal water that must be processed to obtain heat, many conventional chemical inhibitors are not economically viable. Moreover, most chemical inhibitors are costly and can readily change the fluid chemistry that results in generating undesired products. Nanobubbles are environment-friendly, inexpensive, and easy-to-use, and thus have been used in a broad area of applications by taking advantage of their unique physicochemical properties. Here we propose that nanobubbles can be used as inhibitors of corrosion and scaling in the geothermal system. First, this paper reviews the mitigation methods for corrosion and scale currently used in a geothermal power system, and second, provides an overview on the novel use of nanobubbles as inhibitors of corrosion and scale from theoretical and experimental perspectives. We suggest that nanobubbles can be powerful, chemically benign, environment-friendly, and inexpensive inhibitors of corrosion and scaling, compared with the chemical products commonly used. The mechanisms on how nanobubbles act as inhibitors and their inhibition effectiveness vary with different chemical conditions of geothermal fluid.

Suggested Citation

  • Kioka, Arata & Nakagawa, Masami, 2021. "Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006596
    DOI: 10.1016/j.rser.2021.111373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chaofan & Witte, Francesco & Tuschy, Ilja & Kolditz, Olaf & Shao, Haibing, 2022. "Parametric optimization and comparative study of an organic Rankine cycle power plant for two-phase geothermal sources," Energy, Elsevier, vol. 252(C).
    2. Soltani, M. & Moradi Kashkooli, Farshad & Alian Fini, Mehdi & Gharapetian, Derrick & Nathwani, Jatin & Dusseault, Maurice B., 2022. "A review of nanotechnology fluid applications in geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.