IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i6-7p1620-1627.html
   My bibliography  Save this article

In-cylinder fluid flow, turbulence and spray models--A review

Author

Listed:
  • Basha, Syed Ameer
  • Raja Gopal, K.

Abstract

This article is a literature review of use of computational fluid dynamics (CFD) codes to model the in-cylinder fluid flow, turbulence and spray characteristics. This study is based on the reports of about 60 scientists, who published their results between 1978 and 2008. Most of the scientists and researchers used CFD codes to analyze the models under simulation conditions and compared these simulated results with experimental results. Some scientists reported that different engines exhibit different behaviors with similar fuel sprays and Re-Normalized Group (RNG) k-[var epsilon] model is the best applicable turbulence model for engine simulation. The KIVA code is widely used for model development in academia due to the availability of the source. However, its capability for resolving complex geometries is limited. On the other hand, other commercial CFD codes such as STAR-CD, FIRE, VECTIS and FLUENT are frequently used by the industry due to their superior mesh generation interfaces and because of their available user support. Some scientists combined STAR-CD and KIVA code for the engine simulations but they concluded that, it would be preferable to implement the advanced submodels directly into one commercial code for engine simulations.

Suggested Citation

  • Basha, Syed Ameer & Raja Gopal, K., 2009. "In-cylinder fluid flow, turbulence and spray models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1620-1627, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1620-1627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00164-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jemni, Mohamed Ali & Kantchev, Gueorgui & Abid, Mohamed Salah, 2011. "Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations," Energy, Elsevier, vol. 36(5), pages 2701-2715.
    2. Chen, Yangyang & Liu, Aodong & Deng, Banglin & Xu, Zhenxin & Feng, Renhua & Fu, Jianqin & Liu, Xiaoqiang & Zhang, Guoqing & Zhou, Lili, 2019. "The influences of ignition modes on the performances for a motorcycle single cylinder gasoline engine at lean burn operation: Looking inside interaction between flame front and turbulence," Energy, Elsevier, vol. 179(C), pages 528-541.
    3. Simone Sparacino & Fabio Berni & Alessandro d’Adamo & Vesselin Krassimirov Krastev & Andrea Cavicchi & Lucio Postrioti, 2019. "Impact of the Primary Break-Up Strategy on the Morphology of GDI Sprays in 3D-CFD Simulations of Multi-Hole Injectors," Energies, MDPI, vol. 12(15), pages 1-24, July.
    4. Jie Pan & Junfang Ma & Junyin Li & Hongzhe Liu & Jing Wei & Jingjing Xu & Tao Zhu & Hairui Zhang & Wei Li & Jiaying Pan, 2022. "Influence of Intake Port Structure on the Performance of a Spark-Ignited Natural Gas Engine," Energies, MDPI, vol. 15(22), pages 1-13, November.
    5. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    6. Wang, Guixin & Yu, Wenbin & Li, Xiaobo & Su, Yanpan & Yang, Rui & Wu, Wentao, 2019. "Study on dynamic characteristics of intake system and combustion of controllable intake swirl diesel engine," Energy, Elsevier, vol. 180(C), pages 1008-1018.
    7. Ali Raza & Hassan Mehboob & Sajjad Miran & Waseem Arif & Syed Farukh Javaid Rizvi, 2020. "Investigation on the Characteristics of Biodiesel Droplets in the Engine Cylinder," Energies, MDPI, vol. 13(14), pages 1-14, July.
    8. Yue Wang & Xin Zhang & Xinmiao Fan & Yanfei Li, 2023. "Simulation and Research of Methane Premixed Combustion Characteristics Based on Constant Volume Combustion Chamber with Different Ignition Modes," Energies, MDPI, vol. 16(20), pages 1-21, October.
    9. Zahra S. Musavi & Henrik Kusar & Robert Andersson & Klas Engvall, 2018. "Modelling and Optimization of a Small Diesel Burner for Mobile Applications," Energies, MDPI, vol. 11(11), pages 1-21, October.
    10. Qian, Yong & Yu, Liang & Li, Zilong & Zhang, Yahui & Xu, Leilei & Zhou, Qiyan & Han, Dong & Lu, Xingcai, 2018. "A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics," Energy, Elsevier, vol. 148(C), pages 424-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1620-1627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.