IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp178-184.html
   My bibliography  Save this article

Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests

Author

Listed:
  • Sajdak, M.
  • Velázquez-Martí, B.
  • López-Cortés, I.
  • Fernández-Sarría, A.
  • Estornell, J.

Abstract

The amount of urban biomass waste derived from pruning operations represents a potential source of bioenergy little studied or considered in local bio-economies. This research focused on direct quantification of lignocellulosic residual biomass yielded during tree pruning, characterization of basic tree parameters and development of indirect biomass prediction models. Sample individuals of 30 Platanus hispanica Münchh. with mean diameter at breast height 23.56 cm, crown diameter 8.44 m, crown base height 3.76 m, and total height 11.57 m were examined. Wood formed 43.34% of pruned biomass before the drying process and wood moisture content in wet basis reached 40.16%. Mean quantity of dry biomass obtained per tree was 23.98 kg and standard deviation was 15.16 kg. Allometric relationships were analyzed. Significant coefficients of determination were observed for dry biomass and diameter at breast height (R2 = 0.87), as well as for dry biomass and conical and parabolic crown volume (R2 = 0.78). The best result (R2 = 0.93) was obtained from a multiple regression model with several explicative variables. Indirect biomass prediction equations and characteristics of yielded residuals derived from this research can be useful for biomass planning and management purposes. These equations can be implemented for urban inventories, and the application of logistic models. The significance of this topic is beyond doubt for urban environment, especially for the possibilities of reducing carbon dioxide emissions and perspectives of biomass utilization as a biofuel.

Suggested Citation

  • Sajdak, M. & Velázquez-Martí, B. & López-Cortés, I. & Fernández-Sarría, A. & Estornell, J., 2014. "Prediction models for estimating pruned biomass obtained from Platanus hispanica Münchh. used for material surveys in urban forests," Renewable Energy, Elsevier, vol. 66(C), pages 178-184.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:178-184
    DOI: 10.1016/j.renene.2013.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113006691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sajdak, M. & Velazquez-Marti, B., 2012. "Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica," Renewable Energy, Elsevier, vol. 47(C), pages 188-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Velázquez-Martí, B. & Gaibor-Cházvez, J. & Niño-Ruiz, Z. & Narbona-Sahuquillo, S., 2018. "Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel," Renewable Energy, Elsevier, vol. 129(PA), pages 629-637.
    2. Hevia, Andrea & Crabiffosse, Alejandra & Álvarez-González, Juan Gabriel & Ruiz-González, Ana Daria & Majada, Juan, 2017. "Novel approach to assessing residual biomass from pruning: A case study in Atlantic Pinus pinaster Ait. timber forests," Renewable Energy, Elsevier, vol. 107(C), pages 620-628.
    3. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    4. Ferla, G. & Caputo, P. & Colaninno, N. & Morello, E., 2020. "Urban greenery management and energy planning: A GIS-based potential evaluation of pruning by-products for energy application for the city of Milan," Renewable Energy, Elsevier, vol. 160(C), pages 185-195.
    5. Vanbeveren, Stefan P.P. & Spinelli, Raffaele & Eisenbies, Mark & Schweier, Janine & Mola-Yudego, Blas & Magagnotti, Natascia & Acuna, Mauricio & Dimitriou, Ioannis & Ceulemans, Reinhart, 2017. "Mechanised harvesting of short-rotation coppices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 90-104.
    6. Velázquez- Martí, B. & Gaibor-Chávez, J. & Niño-Ruiz, Z. & Cortés-Rojas, E., 2018. "Development of biomass fast proximate analysis by thermogravimetric scale," Renewable Energy, Elsevier, vol. 126(C), pages 954-959.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    2. Giuseppe T. Cirella & Alessio Russo & Federico Benassi & Ernest Czermański & Anatoliy G. Goncharuk & Aneta Oniszczuk-Jastrzabek, 2021. "Energy Re-Shift for an Urbanizing World," Energies, MDPI, vol. 14(17), pages 1-22, September.
    3. Velázquez-Martí, B. & Gaibor-Cházvez, J. & Niño-Ruiz, Z. & Narbona-Sahuquillo, S., 2018. "Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel," Renewable Energy, Elsevier, vol. 129(PA), pages 629-637.
    4. Velázquez-Martí, B. & Sajdak, M. & López-Cortés, I. & Callejón-Ferre, A.J., 2014. "Wood characterization for energy application proceeding from pruning Morus alba L., Platanus hispanica Münchh. and Sophora japonica L. in urban areas," Renewable Energy, Elsevier, vol. 62(C), pages 478-483.
    5. Sajdak, M. & Velázquez-Martí, B. & López-Cortés, I., 2014. "Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L," Renewable Energy, Elsevier, vol. 71(C), pages 545-552.
    6. Ferla, G. & Caputo, P. & Colaninno, N. & Morello, E., 2020. "Urban greenery management and energy planning: A GIS-based potential evaluation of pruning by-products for energy application for the city of Milan," Renewable Energy, Elsevier, vol. 160(C), pages 185-195.
    7. Velázquez-Martí, B. & Sajdak, M. & López-Cortés, I., 2013. "Available residual biomass obtained from pruning Morus alba L. trees cultivated in urban forest," Renewable Energy, Elsevier, vol. 60(C), pages 27-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:178-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.