IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i3p591-596.html
   My bibliography  Save this article

Effect of tuned unified power flow controller to mitigate the rotor speed instability of fixed-speed wind turbines

Author

Listed:
  • Jayashri, R.
  • Kumudini Devi, R.P.

Abstract

In this paper, the dynamic performance of grid connected Wind Energy Conversion System (WECS) is analysed in terms of the newly defined concept of rotor speed stability. The WECS is considered as a fixed-speed system that is equipped with a squirrel-cage induction generator. The drive-train is represented as a two-mass model. Results show that for a particular fault simulated the voltage at the Point of Common Coupling (PCC) drops below 80% immediately after fault application and settles at a low value. The rotor speed of induction generators becomes unstable. In order to improve the low voltage ride-through of WECS under fault conditions and to damp the rotor speed oscillations of induction generator, an Unified Power Flow Controller (UPFC) is employed. The gains of this FACTS controller are tuned with a simple Genetic Algorithm (GA). It is observed that UPFC helps not only in regulating the voltage, but also in mitigating the rotor speed instability.

Suggested Citation

  • Jayashri, R. & Kumudini Devi, R.P., 2009. "Effect of tuned unified power flow controller to mitigate the rotor speed instability of fixed-speed wind turbines," Renewable Energy, Elsevier, vol. 34(3), pages 591-596.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:591-596
    DOI: 10.1016/j.renene.2008.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khosravi, N. & Abdolmohammadi, H.R. & Bagheri, S. & Miveh, M.R., 2021. "Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    3. Ramirez, Dionisio & Martinez, Sergio & Blazquez, Francisco & Carrero, Carmelo, 2012. "Use of STATCOM in wind farms with fixed-speed generators for grid code compliance," Renewable Energy, Elsevier, vol. 37(1), pages 202-212.
    4. Minh Quan Duong & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Kim Hung Le, 2015. "Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller," Energies, MDPI, vol. 8(7), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:3:p:591-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.