IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022924.html
   My bibliography  Save this article

Advanced cross-linked anion exchange membranes from acetal ethylene vinyl alcohol copolymer and quaternary ammonium poly(vinyl benzyl chloride) for fuel cell application

Author

Listed:
  • Lu, Yuyang
  • Fan, Huimin
  • Ren, Renjie
  • Wang, Minhao
  • Deng, Cuiwen
  • Yang, Quan
  • Liu, Yi
  • Xiao, Li
  • Zhuang, Lin
  • Han, Juanjuan

Abstract

Based on rigid poly (vinyl benzyl chloride) (PVB) and flexible ethylene vinyl alcohol (EVOH) main chains, anion exchange membranes (AEMs) are prepared using the acetal reaction and the Menshutkin reaction. The crosslinking of rigid and flexible backbones, along with the regulation of hydrophilicity/hydrophobicity by fluorinated side chains on EVOH, endows the resulting AEMs with good mechanical properties. The high ionic conductivity of AEMs originates from the effective ionic aggregation morphology, which is generated from the differences between the two main chains and the fluorinated side chains. Their non-polar main chains with stable acetal groups and β-H-free cations contribute to high alkaline stability of AEMs. Specifically, cIM25-TFBA75-EVOH-PVB possesses an ionic conductivity of 148.5 mS cm−1 at 80 °C, with a swelling degree of 12.3 %. The tensile strength and elongation at break of the sample in a fully hydrated state at 25 °C are 7.0 MPa and 12.2 %, respectively. After immersion in 1 M KOH at 80 °C for 1080 h, it almost retains 90 % of its mass, ion exchange capacity, and conductivity. In fuel cells, it achieves peak power densities of 895 mW cm−2 with H2/O2 and 692 mW cm−2 with H2/CO2-free air at 80 °C.

Suggested Citation

  • Lu, Yuyang & Fan, Huimin & Ren, Renjie & Wang, Minhao & Deng, Cuiwen & Yang, Quan & Liu, Yi & Xiao, Li & Zhuang, Lin & Han, Juanjuan, 2025. "Advanced cross-linked anion exchange membranes from acetal ethylene vinyl alcohol copolymer and quaternary ammonium poly(vinyl benzyl chloride) for fuel cell application," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022924
    DOI: 10.1016/j.renene.2024.122224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junhua Wang & Yun Zhao & Brian P. Setzler & Santiago Rojas-Carbonell & Chaya Ben Yehuda & Alina Amel & Miles Page & Lan Wang & Keda Hu & Lin Shi & Shimshon Gottesfeld & Bingjun Xu & Yushan Yan, 2019. "Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells," Nature Energy, Nature, vol. 4(5), pages 392-398, May.
    2. Zhang, Dengji & Ye, Niya & Chen, Shaoshuai & Wan, Ruiying & Yang, Yunfei & He, Ronghuan, 2020. "Enhancing properties of poly(2,6-dimethyl-1,4-phenylene oxide)-based anion exchange membranes with 5-mercaptotetrazole modified graphene oxides," Renewable Energy, Elsevier, vol. 160(C), pages 250-260.
    3. Xu, Shicheng & Wu, Wanlong & Wan, Ruiying & Wei, Wei & Li, Yujiao & Wang, Jin & Sun, Xiaoqi & He, Ronghuan, 2022. "Tailoring the molecular structure of pyridine-based polymers for enhancing performance of anion exchange electrolyte membranes," Renewable Energy, Elsevier, vol. 194(C), pages 366-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Ni, Hongzhe & Zhao, Jialin & Feng, Kuirong & Wu, Jingyi & Lei, Yijia & Gao, Jian & Wang, Yan & Yu, Junjian & Yang, Jiayao & Sun, Shiyao & Li, Zhen & Wang, Zhe, 2024. "Doped double spirocyclic cationic POSS for nanocomposite anion exchange membranes with high conductivity and robustness," Renewable Energy, Elsevier, vol. 237(PA).
    2. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yang, Yunfei & Ye, Niya & Chen, Shaoshuai & Zhang, Dengji & Wan, Ruiying & Peng, Xiaomeng & He, Ronghuan, 2020. "Surfactant-assisted incorporation of ZrO2 nanoparticles in quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for superior properties of anion exchange membranes," Renewable Energy, Elsevier, vol. 166(C), pages 45-55.
    5. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yanyan Fang & Cong Wei & Zenan Bian & Xuanwei Yin & Bo Liu & Zhaohui Liu & Peng Chi & Junxin Xiao & Wanjie Song & Shuwen Niu & Chongyang Tang & Jun Liu & Xiaolin Ge & Tongwen Xu & Gongming Wang, 2024. "Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Wei, Xiaoqing & Ren, Zhiwei & Wu, Dan & Hu, Shu & Li, Qingquan & Gao, Weimin & Zhao, Yun & Che, Quantong, 2025. "Biaxially stretched anion exchange membrane with high and stable hydroxide conductivity at subzero temperature," Renewable Energy, Elsevier, vol. 240(C).
    8. Yuhua Xia & Mengzheng Ouyang & Vladimir Yufit & Rui Tan & Anna Regoutz & Anqi Wang & Wenjie Mao & Barun Chakrabarti & Ashkan Kavei & Qilei Song & Anthony R. Kucernak & Nigel P. Brandon, 2022. "A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Peimiao Zou & Dinu Iuga & Sanliang Ling & Alex J. Brown & Shigang Chen & Mengfei Zhang & Yisong Han & A. Dominic Fortes & Christopher M. Howard & Shanwen Tao, 2024. "A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Zhe Jiang & Xuerui Liu & Xiao-Zhi Liu & Shuang Huang & Ying Liu & Ze-Cheng Yao & Yun Zhang & Qing-Hua Zhang & Lin Gu & Li-Rong Zheng & Li Li & Jianan Zhang & Youjun Fan & Tang Tang & Zhongbin Zhuang &, 2023. "Interfacial assembly of binary atomic metal-Nx sites for high-performance energy devices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Gumaa A. El-Nagar & Flora Haun & Siddharth Gupta & Sasho Stojkovikj & Matthew T. Mayer, 2023. "Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Xingdong Wang & Xuerui Liu & Jinjie Fang & Houpeng Wang & Xianwei Liu & Haiyong Wang & Chengjin Chen & Yongsheng Wang & Xuejiang Zhang & Wei Zhu & Zhongbin Zhuang, 2024. "Tuning the apparent hydrogen binding energy to achieve high-performance Ni-based hydrogen oxidation reaction catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Gu, Yao & Nan, Songbo & Su, Xin & Liang, Yu & Zhang, Yu & He, Ronghuan, 2025. "Improving the stability of poly(arylene piperidinium)-based membranes by capturing free radicals with the crosslinker of aminated lignin," Renewable Energy, Elsevier, vol. 240(C).
    14. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Wei Wang & Ruixiang Guo & Aodi Zheng & Xiaorui Jin & Xiongjie Jia & Zhiwei Ren & Yangkai Han & Lifeng Zhang & Yeming Zhai & Xiaofen Liu & Haoran Jiang & Yun Zhao & Kai-Ge Zhou & Meiling Wu & Zhongyi J, 2025. "Promoting in-situ stability of hydroxide exchange membranes by thermally conductive network for durable water electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    16. Qinglu Liu & Tang Tang & Ziyu Tian & Shiwen Ding & Linqin Wang & Dexin Chen & Zhiwei Wang & Wentao Zheng & Husileng Lee & Xingyu Lu & Xiaohe Miao & Lin Liu & Licheng Sun, 2024. "A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.