IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014490.html
   My bibliography  Save this article

Hydrolysis-oxidation of starch to formic acid in the presence of vanadium-containing molybdophosphoric heteropoly acid (H3+xPMo12-xVxO40): Effect of acidity and vanadium content on the yield of formic acid

Author

Listed:
  • Gromov, Nikolay V.
  • Medvedeva, Tatiana B.
  • Lukoyanov, Ivan A.
  • Ogorodnikova, Olga L.
  • Panchenko, Valentina N.
  • Parmon, Valentin N.
  • Timofeeva, Maria N.

Abstract

Formic acid (FA) is an important chemical commodity as well as a promising medium for hydrogen storage and hydrogen production. Herein, a one-pot hydrolysis-oxidation of starch to formic acid (FA) catalyzed by molybdovanadophosphoric heteropoly acids (H3+xPMo12-xVxO40, x = 1, 2, 4, and 5) (PMo12-xVx) as bifunctional catalysts was demonstrated. The reaction was investigated at 120–150 °C. 2–5 MPa of gas mixture (O2/N2 - 20/80 vol/vol) was used as the oxidant. The rate of starch hydrolysis to glucose was found to decrease with decreasing the strength of PMo12-xVx. The yield of FA was demonstrated to depend on the number of V atoms in the framework of heteropoly anion. The initial rate of FA formation rose with an increasing number of V atoms. However, multi-substituted HPA favors overoxidation of the reaction mixture. Maximum yield of formic acid reached 67 % in 7 h under optimal conditions.

Suggested Citation

  • Gromov, Nikolay V. & Medvedeva, Tatiana B. & Lukoyanov, Ivan A. & Ogorodnikova, Olga L. & Panchenko, Valentina N. & Parmon, Valentin N. & Timofeeva, Maria N., 2024. "Hydrolysis-oxidation of starch to formic acid in the presence of vanadium-containing molybdophosphoric heteropoly acid (H3+xPMo12-xVxO40): Effect of acidity and vanadium content on the yield of formic," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014490
    DOI: 10.1016/j.renene.2023.119534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitri A. Bulushev, 2021. "Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    2. Bidyut Bikash Sarma & Ronny Neumann, 2014. "Polyoxometalate-mediated electron transfer–oxygen transfer oxidation of cellulose and hemicellulose to synthesis gas," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    3. Shen, Feng & Li, Ye & Qin, Xiaoya & Guo, Haixin & Li, Jialu & Yang, Jirui & Ding, Yongzhen, 2022. "Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts," Renewable Energy, Elsevier, vol. 185(C), pages 139-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchun Yang & Dmitri A. Bulushev & Jun Yang & Quan Zhang, 2022. "New Liquid Chemical Hydrogen Storage Technology," Energies, MDPI, vol. 15(17), pages 1-18, August.
    2. Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Shen, Feng & Li, Ye & Qin, Xiaoya & Guo, Haixin & Li, Jialu & Yang, Jirui & Ding, Yongzhen, 2022. "Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts," Renewable Energy, Elsevier, vol. 185(C), pages 139-146.
    4. Dmitri A. Bulushev, 2021. "Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol," Energies, MDPI, vol. 14(20), pages 1-5, October.
    5. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    6. He, Zhuosen & Hou, Yucui & Li, He & Wei, Jian & Ren, Shuhang & Wu, Weize, 2023. "Novel chemical looping oxidation of biomass-derived carbohydrates to super-high-yield formic acid using heteropolyacids as oxygen carrier," Renewable Energy, Elsevier, vol. 207(C), pages 461-470.
    7. Luyao Guo & Kaixuan Zhuge & Siyang Yan & Shiyi Wang & Jia Zhao & Saisai Wang & Panzhe Qiao & Jiaxu Liu & Xiaoling Mou & Hejun Zhu & Ziang Zhao & Li Yan & Ronghe Lin & Yunjie Ding, 2023. "Defect-driven nanostructuring of low-nuclearity Pt-Mo ensembles for continuous gas-phase formic acid dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.