IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp1368-1377.html
   My bibliography  Save this article

Biohydrogen production from fruit waste by Clostridium strain BOH3

Author

Listed:
  • Mahato, Rabindra Kumar
  • Kumar, Dharmendhar
  • Rajagopalan, Gobinath

Abstract

Clostridium strain BOH3 can produce hydrogen from agro-residues based media. This report reveals its ability to utilize fruit waste for hydrogen production. In the first approach, for BOH3 fermentation fruit waste hydrolysates generated from microwave (2.45 GHz for 15 min) or moist heat (121 °C for 15 min) treatment were used as substrates, after 24 h the hydrogen production was 2526–3118 ml/l, with the yield 2.43–2.51 mol/mol hexose. In the second approach, strain BOH3 was directly cultured into heterogeneous media supplemented with 52.57 ± 2.20 g TS/l fruit waste, after 60 h it supported a high level of hydrogen production 10720 ± 137 ml/l, with the yield 359.97 ± 12.80 ml/g TS utilized. Further investigation showed that strain BOH3 can excrete 0.35 ± 0.08 U/ml amylase, 1.22 ± 0.10 U/ml cellulase, 0.72 ± 0.10 U/ml pectinase and 3.11 ± 0.04 U/ml xylanase from fruit waste based media. Consequently, strain BOH3 renders a consolidated bioprocessing for biohydrogen production from fruit waste.

Suggested Citation

  • Mahato, Rabindra Kumar & Kumar, Dharmendhar & Rajagopalan, Gobinath, 2020. "Biohydrogen production from fruit waste by Clostridium strain BOH3," Renewable Energy, Elsevier, vol. 153(C), pages 1368-1377.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1368-1377
    DOI: 10.1016/j.renene.2020.02.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopalan, Gobinath & He, Jianzhong & Yang, Kun-Lin, 2016. "One-pot fermentation of agricultural residues to produce butanol and hydrogen by Clostridium strain BOH3," Renewable Energy, Elsevier, vol. 85(C), pages 1127-1134.
    2. Cappelletti, Bianca Martins & Reginatto, Valeria & Amante, Edna Regina & Antônio, Regina Vasconcellos, 2011. "Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum," Renewable Energy, Elsevier, vol. 36(12), pages 3367-3372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    2. Xiaona Wang & Haishu Sun & Yonglin Wang & Fangxia Wang & Wenbin Zhu & Chuanfu Wu & Qunhui Wang & Ming Gao, 2023. "Feasibility of Efficient, Direct, Butanol Production from Food Waste without Nutrient Supplement by Clostridium saccharoperbutylacetonicum N1-4," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    3. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    4. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    5. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    6. Antony V. Samrot & Deenadhayalan Rajalakshmi & Mahendran Sathiyasree & Subramanian Saigeetha & Kasirajan Kasipandian & Nachiyar Valli & Nellore Jayshree & Pandurangan Prakash & Nagarajan Shobana, 2023. "A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    7. Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
    8. Ibrahim, Mohamad Faizal & Ramli, Norhayati & Kamal Bahrin, Ezyana & Abd-Aziz, Suraini, 2017. "Cellulosic biobutanol by Clostridia: Challenges and improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1241-1254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1368-1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.