IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i4p431-450.html
   My bibliography  Save this article

Reliability study of complex physical systems using SysML

Author

Listed:
  • David, Pierre
  • Idasiak, Vincent
  • Kratz, Frédéric

Abstract

The development of safety critical systems becomes even harder since the complexity of these systems grows continuously. Moreover, this kind of process involves the use of powerful design methods and precise reliability techniques that utilize dissimilar models and construction policy. In this article we propose a method to unify and enhance this process by linking functional design phase using SysML with commonly used reliability techniques such as FMEA and dysfunctional models construction in AltaRica Data Flow. We present how SysML models can be analyzed automatically in order to produce an FMEA and expose a parallel between SysML models and AltaRica Data Flow ones. The given approach is structured around a database of dysfunctional behaviors that supports the studies and is updated by the obtained results. We exemplify the approach to analyze a system of level controlling of a tank.

Suggested Citation

  • David, Pierre & Idasiak, Vincent & Kratz, Frédéric, 2010. "Reliability study of complex physical systems using SysML," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 431-450.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:4:p:431-450
    DOI: 10.1016/j.ress.2009.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lundteigen, Mary Ann & Rausand, Marvin & Utne, Ingrid Bouwer, 2009. "Integrating RAMS engineering and management with the safety life cycle of IEC 61508," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1894-1903.
    2. Iwu, Frantz & Galloway, Andy & McDermid, John & Toyn, Ian, 2007. "Integrating safety and formal analyses using UML and PFS," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 156-170.
    3. Boiteau, M. & Dutuit, Y. & Rauzy, A. & Signoret, J.-P., 2006. "The AltaRica data-flow language in use: modeling of production availability of a multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 747-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cressent, Robin & David, Pierre & Idasiak, Vincent & Kratz, Frederic, 2013. "Designing the database for a reliability aware Model-Based System Engineering process," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 171-182.
    2. Jenab, K. & Sarfaraz, A. & Dhillon, B.S. & Seyed Hosseini, S.M., 2012. "Dynamic MLD analysis with flow graphs," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 80-85.
    3. Cuer, Romain & Piétrac, Laurent & Niel, Eric & Diallo, Saidou & Minoiu-Enache, Nicoleta & Dang-Van-Nhan, Christophe, 2018. "A formal framework for the safe design of the Autonomous Driving supervision," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 29-40.
    4. Hu, Yunpeng & Peng, Qibo & Ni, Qing & Wu, Xinfeng & Ye, Dongming, 2023. "Event-based safety and reliability analysis integration in model-based space mission design," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Lipaczewski, Michael & Ortmeier, Frank & Prosvirnova, Tatiana & Rauzy, Antoine & Struck, Simon, 2015. "Comparison of modeling formalisms for Safety Analyses: SAML and AltaRica," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 191-199.
    6. Linlin Liu & Dongming Fan & Zili Wang & Dezhen Yang & Jingjing Cui & Xinrui Ma & Yi Ren, 2019. "Enhanced GO methodology to support failure mode, effects and criticality analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1451-1468, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Bernardi & Lacramioara Dranca & José Merseguer, 2016. "A model-driven approach to survivability requirement assessment for critical systems," Journal of Risk and Reliability, , vol. 230(5), pages 485-501, October.
    2. Brissaud, Florent & Barros, Anne & Bérenguer, Christophe & Charpentier, Dominique, 2011. "Reliability analysis for new technology-based transmitters," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 299-313.
    3. Zhang, Huilong & Innal, Fares & Dufour, François & Dutuit, Yves, 2014. "Piecewise Deterministic Markov Processes based approach applied to an offshore oil production system," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 126-134.
    4. Kazimierz T. Kosmowski & Emilian Piesik & Jan Piesik & Marcin Śliwiński, 2022. "Integrated Functional Safety and Cybersecurity Evaluation in a Framework for Business Continuity Management," Energies, MDPI, vol. 15(10), pages 1-21, May.
    5. Desgeorges, Loïc & Piriou, Pierre-Yves & Lemattre, Thibault & Chraibi, Hassane, 2021. "Formalism and semantics of PyCATSHOO: A simulator of distributed stochastic hybrid automata," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Michel Batteux & Tatiana Prosvirnova & Antoine Rauzy, 2017. "AltaRica 3.0 assertions: The whys and wherefores," Journal of Risk and Reliability, , vol. 231(6), pages 691-700, December.
    7. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    8. Cherfi, Abraham & Leeman, Michel & Meurville, Florent & Rauzy, Antoine, 2014. "Modeling automotive safety mechanisms: A Markovian approach," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 42-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:4:p:431-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.