IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i12p1345-1357.html
   My bibliography  Save this article

Unavailability of critical SCADA communication links interconnecting a power grid and a Telco network

Author

Listed:
  • Bobbio, A.
  • Bonanni, G.
  • Ciancamerla, E.
  • Clemente, R.
  • Iacomini, A.
  • Minichino, M.
  • Scarlatti, A.
  • Terruggia, R.
  • Zendri, E.

Abstract

The availability of power supply to power grid customers depends upon the availability of services of supervision, control and data acquisition (SCADA) system, which constitutes the nervous system of a power grid. In turn, SCADA services depend on the availability of the interconnected networks supporting such services. We propose a service oriented stochastic modelling methodology to investigate the availability of large interconnected networks, based on the hierarchical application of different modelling formalisms to different parts of the networks. Interconnected networks are decomposed according to the specific services delivered until the failure and repair mechanisms of the decomposed elementary blocks can be identified. We represent each network by a convenient stochastic modelling formalism, able to capture the main technological issues and to cope with realistic assumptions about failure and recovery mechanisms. This procedure confines the application of the more intensive computational techniques to those subsystems that actually require it. The paper concentrates on an actual failure scenario, occurred in Rome in January 2004 that involved the outage of critical SCADA communication links, interconnecting a power grid and a Telco network.

Suggested Citation

  • Bobbio, A. & Bonanni, G. & Ciancamerla, E. & Clemente, R. & Iacomini, A. & Minichino, M. & Scarlatti, A. & Terruggia, R. & Zendri, E., 2010. "Unavailability of critical SCADA communication links interconnecting a power grid and a Telco network," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1345-1357.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:12:p:1345-1357
    DOI: 10.1016/j.ress.2010.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010001456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan T. Murray & Tony H. Grubesic, 2007. "Overview of Reliability and Vulnerability in Critical Infrastructure," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 1, pages 1-8, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    2. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    3. Genge, Béla & Siaterlis, Christos, 2013. "Analysis of the effects of distributed denial-of-service attacks on MPLS networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 87-95.
    4. Li, Xin & Wu, Haotian & Scoglio, Caterina & Gruenbacher, Don, 2015. "Robust allocation of weighted dependency links in cyber–physical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 316-327.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    7. Ji, Xingpei & Wang, Bo & Liu, Dichen & Dong, Zhaoyang & Chen, Guo & Zhu, Zhenshan & Zhu, Xuedong & Wang, Xunting, 2016. "Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 235-245.
    8. Bloomfield, Robin E. & Popov, Peter & Salako, Kizito & Stankovic, Vladimir & Wright, David, 2017. "Preliminary interdependency analysis: An approach to support critical-infrastructure risk-assessment," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 198-217.
    9. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    10. Følstad, Eirik L. & Helvik, Bjarne E., 2016. "The cost for meeting SLA dependability requirements; implications for customers and providers," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 136-146.
    11. Nan, Cen & Eusgeld, Irene & Kröger, Wolfgang, 2013. "Analyzing vulnerabilities between SCADA system and SUC due to interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 76-93.
    12. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robertson, Lindsay J., 2010. "From societal fragility to sustainable robustness: Some tentative technology trajectories," Technology in Society, Elsevier, vol. 32(4), pages 342-351.
    2. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    3. Yates, Justin & Sanjeevi, Sujeevraja, 2013. "A length-based, multiple-resource formulation for shortest path network interdiction problems in the transportation sector," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 107-119.
    4. Ting Lei & Daoqin Tong, 2013. "Hedging against service disruptions: an expected median location problem with site-dependent failure probabilities," Journal of Geographical Systems, Springer, vol. 15(4), pages 491-512, October.
    5. Md Shahab Uddin & Pennung Warnitchai, 2020. "Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1475-1496, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:12:p:1345-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.