IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i12p1830-1841.html
   My bibliography  Save this article

Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evolution and accuracy

Author

Listed:
  • Villanueva, J.F.
  • Sanchez, A.I.
  • Carlos, S.
  • Martorell, S.

Abstract

This paper presents the results of a survey to show the applicability of an approach based on a combination of distribution-free tolerance interval and genetic algorithms for testing and maintenance optimization of safety-related systems based on unavailability and cost estimation acting as uncertain decision criteria. Several strategies have been checked using a combination of Monte Carlo (simulation)––genetic algorithm (search-evolution). Tolerance intervals for the unavailability and cost estimation are obtained to be used by the genetic algorithms. Both single- and multiple-objective genetic algorithms are used. In general, it is shown that the approach is a robust, fast and powerful tool that performs very favorably in the face of noise in the output (i.e. uncertainty) and it is able to find the optimum over a complicated, high-dimensional nonlinear space in a tiny fraction of the time required for enumeration of the decision space. This approach reduces the computational effort by means of providing appropriate balance between accuracy of simulation and evolution; however, negative effects are also shown when a not well-balanced accuracy–evolution couple is used, which can be avoided or mitigated with the use of a single-objective genetic algorithm or the use of a multiple-objective genetic algorithm with additional statistical information.

Suggested Citation

  • Villanueva, J.F. & Sanchez, A.I. & Carlos, S. & Martorell, S., 2008. "Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evolution and accuracy," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1830-1841.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:12:p:1830-1841
    DOI: 10.1016/j.ress.2008.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    2. Ye, Zhisheng & Li, Zhizhong & Xie, Min, 2010. "Some improvements on adaptive genetic algorithms for reliability-related applications," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 120-126.
    3. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:12:p:1830-1841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.